Upload train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import (
|
| 2 |
+
GPT2Config,
|
| 3 |
+
GPT2LMHeadModel,
|
| 4 |
+
GPT2TokenizerFast,
|
| 5 |
+
Trainer,
|
| 6 |
+
TrainingArguments,
|
| 7 |
+
TextDataset,
|
| 8 |
+
DataCollatorForLanguageModeling
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
# === Параметры ===
|
| 14 |
+
model_name = "NekitAI"
|
| 15 |
+
data_path = "my_texts.txt"
|
| 16 |
+
block_size = 128
|
| 17 |
+
batch_size = 4
|
| 18 |
+
epochs = 3
|
| 19 |
+
|
| 20 |
+
# === Токенизатор ===
|
| 21 |
+
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
| 22 |
+
tokenizer.pad_token = tokenizer.eos_token # обязательно для обучения
|
| 23 |
+
|
| 24 |
+
# === Конфигурация модели ===
|
| 25 |
+
config = GPT2Config(
|
| 26 |
+
vocab_size=tokenizer.vocab_size,
|
| 27 |
+
n_positions=block_size,
|
| 28 |
+
n_embd=256,
|
| 29 |
+
n_layer=4,
|
| 30 |
+
n_head=4,
|
| 31 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 32 |
+
eos_token_id=tokenizer.eos_token_id
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# === Создание модели ===
|
| 36 |
+
model = GPT2LMHeadModel(config)
|
| 37 |
+
|
| 38 |
+
# === Подготовка датасета ===
|
| 39 |
+
dataset = TextDataset(
|
| 40 |
+
tokenizer=tokenizer,
|
| 41 |
+
file_path=data_path,
|
| 42 |
+
block_size=block_size
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 46 |
+
tokenizer=tokenizer, mlm=False
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# === Аргументы обучения ===
|
| 50 |
+
training_args = TrainingArguments(
|
| 51 |
+
output_dir=model_name,
|
| 52 |
+
overwrite_output_dir=True,
|
| 53 |
+
per_device_train_batch_size=batch_size,
|
| 54 |
+
num_train_epochs=epochs,
|
| 55 |
+
save_steps=500,
|
| 56 |
+
logging_steps=50,
|
| 57 |
+
save_total_limit=1,
|
| 58 |
+
prediction_loss_only=True,
|
| 59 |
+
fp16=True, # включай, если у тебя есть GPU с поддержкой fp16
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# === Trainer ===
|
| 63 |
+
trainer = Trainer(
|
| 64 |
+
model=model,
|
| 65 |
+
args=training_args,
|
| 66 |
+
data_collator=data_collator,
|
| 67 |
+
train_dataset=dataset,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# === Обучение ===
|
| 71 |
+
trainer.train()
|
| 72 |
+
|
| 73 |
+
# === Сохранение модели и токенизатора ===
|
| 74 |
+
Path(model_name).mkdir(parents=True, exist_ok=True)
|
| 75 |
+
model.save_pretrained(model_name)
|
| 76 |
+
tokenizer.save_pretrained(model_name)
|
| 77 |
+
|
| 78 |
+
print(f"\n✅ Готово! Модель сохранена в: {model_name}")
|