Upload 3 files
Browse files- .gitattributes +2 -0
- UsonicSimple.ipynb +418 -0
- mymodel.pdparams +3 -0
- optimizer.pdopt +3 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
mymodel.pdparams filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
optimizer.pdopt filter=lfs diff=lfs merge=lfs -text
|
UsonicSimple.ipynb
ADDED
|
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"请点击[此处](https://ai.baidu.com/docs#/AIStudio_Project_Notebook/a38e5576)查看本环境基本用法. <br>\n",
|
| 8 |
+
"Please click [here ](https://ai.baidu.com/docs#/AIStudio_Project_Notebook/a38e5576) for more detailed instructions. "
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 11,
|
| 14 |
+
"metadata": {
|
| 15 |
+
"execution": {
|
| 16 |
+
"iopub.execute_input": "2022-10-11T15:15:49.511879Z",
|
| 17 |
+
"iopub.status.busy": "2022-10-11T15:15:49.511286Z",
|
| 18 |
+
"iopub.status.idle": "2022-10-11T15:15:51.568549Z",
|
| 19 |
+
"shell.execute_reply": "2022-10-11T15:15:51.567597Z",
|
| 20 |
+
"shell.execute_reply.started": "2022-10-11T15:15:49.511839Z"
|
| 21 |
+
},
|
| 22 |
+
"jupyter": {
|
| 23 |
+
"outputs_hidden": false
|
| 24 |
+
},
|
| 25 |
+
"scrolled": true,
|
| 26 |
+
"tags": []
|
| 27 |
+
},
|
| 28 |
+
"outputs": [],
|
| 29 |
+
"source": [
|
| 30 |
+
"import os\n",
|
| 31 |
+
"import io\n",
|
| 32 |
+
"import numpy as np\n",
|
| 33 |
+
"import matplotlib.pyplot as plt\n",
|
| 34 |
+
"from PIL import Image\n",
|
| 35 |
+
"import paddle\n",
|
| 36 |
+
"from paddle.nn import functional as F\n",
|
| 37 |
+
"import random\n",
|
| 38 |
+
"from paddle.io import Dataset\n",
|
| 39 |
+
"from visualdl import LogWriter\n",
|
| 40 |
+
"from paddle.vision.transforms import transforms as T\n",
|
| 41 |
+
"import warnings\n",
|
| 42 |
+
"import cv2 as cv\n",
|
| 43 |
+
"from PIL import Image\n",
|
| 44 |
+
"import re\n",
|
| 45 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
| 46 |
+
"os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\""
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": 12,
|
| 52 |
+
"metadata": {
|
| 53 |
+
"execution": {
|
| 54 |
+
"iopub.execute_input": "2022-10-11T15:16:14.415916Z",
|
| 55 |
+
"iopub.status.busy": "2022-10-11T15:16:14.415245Z",
|
| 56 |
+
"iopub.status.idle": "2022-10-11T15:16:14.428584Z",
|
| 57 |
+
"shell.execute_reply": "2022-10-11T15:16:14.427470Z",
|
| 58 |
+
"shell.execute_reply.started": "2022-10-11T15:16:14.415874Z"
|
| 59 |
+
},
|
| 60 |
+
"jupyter": {
|
| 61 |
+
"outputs_hidden": false
|
| 62 |
+
},
|
| 63 |
+
"tags": []
|
| 64 |
+
},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": [
|
| 67 |
+
"class SeparableConv2D(paddle.nn.Layer):\n",
|
| 68 |
+
" def __init__(self,\n",
|
| 69 |
+
" in_channels,\n",
|
| 70 |
+
" out_channels,\n",
|
| 71 |
+
" kernel_size,\n",
|
| 72 |
+
" stride=1,\n",
|
| 73 |
+
" padding=0,\n",
|
| 74 |
+
" dilation=1,\n",
|
| 75 |
+
" groups=None,\n",
|
| 76 |
+
" weight_attr=None,\n",
|
| 77 |
+
" bias_attr=None,\n",
|
| 78 |
+
" data_format=\"NCHW\"):\n",
|
| 79 |
+
" super(SeparableConv2D, self).__init__()\n",
|
| 80 |
+
"\n",
|
| 81 |
+
" self._padding = padding\n",
|
| 82 |
+
" self._stride = stride\n",
|
| 83 |
+
" self._dilation = dilation\n",
|
| 84 |
+
" self._in_channels = in_channels\n",
|
| 85 |
+
" self._data_format = data_format\n",
|
| 86 |
+
"\n",
|
| 87 |
+
" # 第一次卷积参数,没有偏置参数\n",
|
| 88 |
+
" filter_shape = [in_channels, 1] + self.convert_to_list(kernel_size, 2, 'kernel_size')\n",
|
| 89 |
+
" self.weight_conv = self.create_parameter(shape=filter_shape, attr=weight_attr)\n",
|
| 90 |
+
"\n",
|
| 91 |
+
" # 第二次卷积参数\n",
|
| 92 |
+
" filter_shape = [out_channels, in_channels] + self.convert_to_list(1, 2, 'kernel_size')\n",
|
| 93 |
+
" self.weight_pointwise = self.create_parameter(shape=filter_shape, attr=weight_attr)\n",
|
| 94 |
+
" self.bias_pointwise = self.create_parameter(shape=[out_channels],\n",
|
| 95 |
+
" attr=bias_attr,\n",
|
| 96 |
+
" is_bias=True)\n",
|
| 97 |
+
"\n",
|
| 98 |
+
" def convert_to_list(self, value, n, name, dtype=np.int):\n",
|
| 99 |
+
" if isinstance(value, dtype):\n",
|
| 100 |
+
" return [value, ] * n\n",
|
| 101 |
+
" else:\n",
|
| 102 |
+
" try:\n",
|
| 103 |
+
" value_list = list(value)\n",
|
| 104 |
+
" except TypeError:\n",
|
| 105 |
+
" raise ValueError(\"The \" + name +\n",
|
| 106 |
+
" \"'s type must be list or tuple. Received: \" + str(\n",
|
| 107 |
+
" value))\n",
|
| 108 |
+
" if len(value_list) != n:\n",
|
| 109 |
+
" raise ValueError(\"The \" + name + \"'s length must be \" + str(n) +\n",
|
| 110 |
+
" \". Received: \" + str(value))\n",
|
| 111 |
+
" for single_value in value_list:\n",
|
| 112 |
+
" try:\n",
|
| 113 |
+
" dtype(single_value)\n",
|
| 114 |
+
" except (ValueError, TypeError):\n",
|
| 115 |
+
" raise ValueError(\n",
|
| 116 |
+
" \"The \" + name + \"'s type must be a list or tuple of \" + str(\n",
|
| 117 |
+
" n) + \" \" + str(dtype) + \" . Received: \" + str(\n",
|
| 118 |
+
" value) + \" \"\n",
|
| 119 |
+
" \"including element \" + str(single_value) + \" of type\" + \" \"\n",
|
| 120 |
+
" + str(type(single_value)))\n",
|
| 121 |
+
" return value_list\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" def forward(self, inputs):\n",
|
| 124 |
+
" conv_out = F.conv2d(inputs,\n",
|
| 125 |
+
" self.weight_conv,\n",
|
| 126 |
+
" padding=self._padding,\n",
|
| 127 |
+
" stride=self._stride,\n",
|
| 128 |
+
" dilation=self._dilation,\n",
|
| 129 |
+
" groups=self._in_channels,\n",
|
| 130 |
+
" data_format=self._data_format)\n",
|
| 131 |
+
"\n",
|
| 132 |
+
" out = F.conv2d(conv_out,\n",
|
| 133 |
+
" self.weight_pointwise,\n",
|
| 134 |
+
" bias=self.bias_pointwise,\n",
|
| 135 |
+
" padding=0,\n",
|
| 136 |
+
" stride=1,\n",
|
| 137 |
+
" dilation=1,\n",
|
| 138 |
+
" groups=1,\n",
|
| 139 |
+
" data_format=self._data_format)\n",
|
| 140 |
+
"\n",
|
| 141 |
+
" return out\n",
|
| 142 |
+
"class Encoder(paddle.nn.Layer):\n",
|
| 143 |
+
" def __init__(self, in_channels, out_channels):\n",
|
| 144 |
+
" super(Encoder, self).__init__()\n",
|
| 145 |
+
"\n",
|
| 146 |
+
" self.relus = paddle.nn.LayerList(\n",
|
| 147 |
+
" [paddle.nn.ReLU() for i in range(2)])\n",
|
| 148 |
+
" self.separable_conv_01 = SeparableConv2D(in_channels,\n",
|
| 149 |
+
" out_channels,\n",
|
| 150 |
+
" kernel_size=3,\n",
|
| 151 |
+
" padding='same')\n",
|
| 152 |
+
" self.bns = paddle.nn.LayerList(\n",
|
| 153 |
+
" [paddle.nn.BatchNorm2D(out_channels) for i in range(2)])\n",
|
| 154 |
+
"\n",
|
| 155 |
+
" self.separable_conv_02 = SeparableConv2D(out_channels,\n",
|
| 156 |
+
" out_channels,\n",
|
| 157 |
+
" kernel_size=3,\n",
|
| 158 |
+
" padding='same')\n",
|
| 159 |
+
" self.pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)\n",
|
| 160 |
+
" self.residual_conv = paddle.nn.Conv2D(in_channels,\n",
|
| 161 |
+
" out_channels,\n",
|
| 162 |
+
" kernel_size=1,\n",
|
| 163 |
+
" stride=2,\n",
|
| 164 |
+
" padding='same')\n",
|
| 165 |
+
"\n",
|
| 166 |
+
" def forward(self, inputs):\n",
|
| 167 |
+
" previous_block_activation = inputs\n",
|
| 168 |
+
"\n",
|
| 169 |
+
" y = self.relus[0](inputs)\n",
|
| 170 |
+
" y = self.separable_conv_01(y)\n",
|
| 171 |
+
" y = self.bns[0](y)\n",
|
| 172 |
+
" y = self.relus[1](y)\n",
|
| 173 |
+
" y = self.separable_conv_02(y)\n",
|
| 174 |
+
" y = self.bns[1](y)\n",
|
| 175 |
+
" y = self.pool(y)\n",
|
| 176 |
+
"\n",
|
| 177 |
+
" residual = self.residual_conv(previous_block_activation)\n",
|
| 178 |
+
" y = paddle.add(y, residual)\n",
|
| 179 |
+
"\n",
|
| 180 |
+
" return y\n",
|
| 181 |
+
"class Decoder(paddle.nn.Layer):\n",
|
| 182 |
+
" def __init__(self, in_channels, out_channels):\n",
|
| 183 |
+
" super(Decoder, self).__init__()\n",
|
| 184 |
+
"\n",
|
| 185 |
+
" self.relus = paddle.nn.LayerList(\n",
|
| 186 |
+
" [paddle.nn.ReLU() for i in range(2)])\n",
|
| 187 |
+
" self.conv_transpose_01 = paddle.nn.Conv2DTranspose(in_channels,\n",
|
| 188 |
+
" out_channels,\n",
|
| 189 |
+
" kernel_size=3,\n",
|
| 190 |
+
" padding=1)\n",
|
| 191 |
+
" self.conv_transpose_02 = paddle.nn.Conv2DTranspose(out_channels,\n",
|
| 192 |
+
" out_channels,\n",
|
| 193 |
+
" kernel_size=3,\n",
|
| 194 |
+
" padding=1)\n",
|
| 195 |
+
" self.bns = paddle.nn.LayerList(\n",
|
| 196 |
+
" [paddle.nn.BatchNorm2D(out_channels) for i in range(2)]\n",
|
| 197 |
+
" )\n",
|
| 198 |
+
" self.upsamples = paddle.nn.LayerList(\n",
|
| 199 |
+
" [paddle.nn.Upsample(scale_factor=2.0) for i in range(2)]\n",
|
| 200 |
+
" )\n",
|
| 201 |
+
" self.residual_conv = paddle.nn.Conv2D(in_channels,\n",
|
| 202 |
+
" out_channels,\n",
|
| 203 |
+
" kernel_size=1,\n",
|
| 204 |
+
" padding='same')\n",
|
| 205 |
+
"\n",
|
| 206 |
+
" def forward(self, inputs):\n",
|
| 207 |
+
" previous_block_activation = inputs\n",
|
| 208 |
+
"\n",
|
| 209 |
+
" y = self.relus[0](inputs)\n",
|
| 210 |
+
" y = self.conv_transpose_01(y)\n",
|
| 211 |
+
" y = self.bns[0](y)\n",
|
| 212 |
+
" y = self.relus[1](y)\n",
|
| 213 |
+
" y = self.conv_transpose_02(y)\n",
|
| 214 |
+
" y = self.bns[1](y)\n",
|
| 215 |
+
" y = self.upsamples[0](y)\n",
|
| 216 |
+
"\n",
|
| 217 |
+
" residual = self.upsamples[1](previous_block_activation)\n",
|
| 218 |
+
" residual = self.residual_conv(residual)\n",
|
| 219 |
+
"\n",
|
| 220 |
+
" y = paddle.add(y, residual)\n",
|
| 221 |
+
"\n",
|
| 222 |
+
" return y\n",
|
| 223 |
+
"class PetNet(paddle.nn.Layer):\n",
|
| 224 |
+
" def __init__(self, num_classes):\n",
|
| 225 |
+
" super(PetNet, self).__init__()\n",
|
| 226 |
+
"\n",
|
| 227 |
+
" self.conv_1 = paddle.nn.Conv2D(3, 32,\n",
|
| 228 |
+
" kernel_size=3,\n",
|
| 229 |
+
" stride=2,\n",
|
| 230 |
+
" padding='same')\n",
|
| 231 |
+
" self.bn = paddle.nn.BatchNorm2D(32)\n",
|
| 232 |
+
" self.relu = paddle.nn.ReLU()\n",
|
| 233 |
+
"\n",
|
| 234 |
+
" in_channels = 32\n",
|
| 235 |
+
" self.encoders = []\n",
|
| 236 |
+
" self.encoder_list = [64, 128, 256]\n",
|
| 237 |
+
" self.decoder_list = [256, 128, 64, 32]\n",
|
| 238 |
+
"\n",
|
| 239 |
+
" for out_channels in self.encoder_list:\n",
|
| 240 |
+
" block = self.add_sublayer('encoder_{}'.format(out_channels),\n",
|
| 241 |
+
" Encoder(in_channels, out_channels))\n",
|
| 242 |
+
" self.encoders.append(block)\n",
|
| 243 |
+
" in_channels = out_channels\n",
|
| 244 |
+
"\n",
|
| 245 |
+
" self.decoders = []\n",
|
| 246 |
+
"\n",
|
| 247 |
+
" for out_channels in self.decoder_list:\n",
|
| 248 |
+
" block = self.add_sublayer('decoder_{}'.format(out_channels),\n",
|
| 249 |
+
" Decoder(in_channels, out_channels))\n",
|
| 250 |
+
" self.decoders.append(block)\n",
|
| 251 |
+
" in_channels = out_channels\n",
|
| 252 |
+
"\n",
|
| 253 |
+
" self.output_conv = paddle.nn.Conv2D(in_channels,\n",
|
| 254 |
+
" num_classes,\n",
|
| 255 |
+
" kernel_size=3,\n",
|
| 256 |
+
" padding='same')\n",
|
| 257 |
+
"\n",
|
| 258 |
+
" def forward(self, inputs):\n",
|
| 259 |
+
" y = self.conv_1(inputs)\n",
|
| 260 |
+
" y = self.bn(y)\n",
|
| 261 |
+
" y = self.relu(y)\n",
|
| 262 |
+
"\n",
|
| 263 |
+
" for encoder in self.encoders:\n",
|
| 264 |
+
" y = encoder(y)\n",
|
| 265 |
+
"\n",
|
| 266 |
+
" for decoder in self.decoders:\n",
|
| 267 |
+
" y = decoder(y)\n",
|
| 268 |
+
"\n",
|
| 269 |
+
" y = self.output_conv(y)\n",
|
| 270 |
+
" return y\n",
|
| 271 |
+
"IMAGE_SIZE = (512, 512)\n",
|
| 272 |
+
"num_classes = 2\n",
|
| 273 |
+
"network = PetNet(num_classes)\n",
|
| 274 |
+
"model = paddle.Model(network)"
|
| 275 |
+
]
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"cell_type": "code",
|
| 279 |
+
"execution_count": 13,
|
| 280 |
+
"metadata": {
|
| 281 |
+
"execution": {
|
| 282 |
+
"iopub.execute_input": "2022-10-11T15:16:14.415916Z",
|
| 283 |
+
"iopub.status.busy": "2022-10-11T15:16:14.415245Z",
|
| 284 |
+
"iopub.status.idle": "2022-10-11T15:16:14.428584Z",
|
| 285 |
+
"shell.execute_reply": "2022-10-11T15:16:14.427470Z",
|
| 286 |
+
"shell.execute_reply.started": "2022-10-11T15:16:14.415874Z"
|
| 287 |
+
},
|
| 288 |
+
"jupyter": {
|
| 289 |
+
"outputs_hidden": false
|
| 290 |
+
},
|
| 291 |
+
"scrolled": true,
|
| 292 |
+
"tags": []
|
| 293 |
+
},
|
| 294 |
+
"outputs": [],
|
| 295 |
+
"source": [
|
| 296 |
+
"#加载训练好的权重\n",
|
| 297 |
+
"optimizer = paddle.optimizer.RMSProp(learning_rate=0.001, parameters=network.parameters())\n",
|
| 298 |
+
"layer_state_dict = paddle.load(\"mymodel.pdparams\")\n",
|
| 299 |
+
"opt_state_dict = paddle.load(\"optimizer.pdopt\")\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"network.set_state_dict(layer_state_dict)\n",
|
| 302 |
+
"optimizer.set_state_dict(opt_state_dict)"
|
| 303 |
+
]
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"cell_type": "code",
|
| 307 |
+
"execution_count": 14,
|
| 308 |
+
"metadata": {
|
| 309 |
+
"execution": {
|
| 310 |
+
"iopub.execute_input": "2022-10-11T16:07:50.639995Z",
|
| 311 |
+
"iopub.status.busy": "2022-10-11T16:07:50.639338Z",
|
| 312 |
+
"iopub.status.idle": "2022-10-11T16:07:50.941928Z",
|
| 313 |
+
"shell.execute_reply": "2022-10-11T16:07:50.940805Z",
|
| 314 |
+
"shell.execute_reply.started": "2022-10-11T16:07:50.639949Z"
|
| 315 |
+
},
|
| 316 |
+
"jupyter": {
|
| 317 |
+
"outputs_hidden": false
|
| 318 |
+
},
|
| 319 |
+
"tags": []
|
| 320 |
+
},
|
| 321 |
+
"outputs": [],
|
| 322 |
+
"source": [
|
| 323 |
+
"def FinalImage(mask,image):\n",
|
| 324 |
+
" # 这个函数的作用是把mask高斯模糊之后的遮罩和原始的image叠加起来\n",
|
| 325 |
+
" #输入 mask [0,255]的这招图\n",
|
| 326 |
+
" #image 必须无条件转化为512*512 三通道彩图\n",
|
| 327 |
+
" \n",
|
| 328 |
+
" th = cv.threshold(mask,140,255,cv.THRESH_BINARY)[1]\n",
|
| 329 |
+
" blur = cv.GaussianBlur(th,(33,33), 15)\n",
|
| 330 |
+
" heatmap_img = cv.applyColorMap(blur, cv.COLORMAP_OCEAN)\n",
|
| 331 |
+
" Blendermap = cv.addWeighted(heatmap_img, 0.5, image, 1, 0)\n",
|
| 332 |
+
" return Blendermap"
|
| 333 |
+
]
|
| 334 |
+
},
|
| 335 |
+
{
|
| 336 |
+
"cell_type": "code",
|
| 337 |
+
"execution_count": 15,
|
| 338 |
+
"metadata": {},
|
| 339 |
+
"outputs": [
|
| 340 |
+
{
|
| 341 |
+
"name": "stdout",
|
| 342 |
+
"output_type": "stream",
|
| 343 |
+
"text": [
|
| 344 |
+
"IMPORTANT: You are using gradio version 3.12.0, however version 3.14.0 is available, please upgrade.\n",
|
| 345 |
+
"--------\n",
|
| 346 |
+
"Running on local URL: http://127.0.0.1:7864\n",
|
| 347 |
+
"Running on public URL: https://317fc297694e39a2.gradio.app\n",
|
| 348 |
+
"\n",
|
| 349 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
|
| 350 |
+
]
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"data": {
|
| 354 |
+
"text/html": [
|
| 355 |
+
"<div><iframe src=\"https://317fc297694e39a2.gradio.app\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 356 |
+
],
|
| 357 |
+
"text/plain": [
|
| 358 |
+
"<IPython.core.display.HTML object>"
|
| 359 |
+
]
|
| 360 |
+
},
|
| 361 |
+
"metadata": {},
|
| 362 |
+
"output_type": "display_data"
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"data": {
|
| 366 |
+
"text/plain": []
|
| 367 |
+
},
|
| 368 |
+
"execution_count": 15,
|
| 369 |
+
"metadata": {},
|
| 370 |
+
"output_type": "execute_result"
|
| 371 |
+
}
|
| 372 |
+
],
|
| 373 |
+
"source": [
|
| 374 |
+
"import gradio as gr\n",
|
| 375 |
+
"def Showsegmentation(image):\n",
|
| 376 |
+
" mask = paddle.argmax(network(paddle.to_tensor([((image - 127.5) / 127.5).transpose(2, 0, 1)]))[0], axis=0).numpy()\n",
|
| 377 |
+
" mask=mask.astype('uint8')*255\n",
|
| 378 |
+
" immask=cv.resize(mask, (512, 512))\n",
|
| 379 |
+
" image=cv.resize(image,(512,512))\n",
|
| 380 |
+
" blendmask=FinalImage(immask,image)\n",
|
| 381 |
+
" return blendmask\n",
|
| 382 |
+
"\n",
|
| 383 |
+
"gr.Interface(fn=Showsegmentation, inputs=\"image\", outputs=\"image\").launch(share=True)"
|
| 384 |
+
]
|
| 385 |
+
},
|
| 386 |
+
{
|
| 387 |
+
"cell_type": "code",
|
| 388 |
+
"execution_count": null,
|
| 389 |
+
"metadata": {},
|
| 390 |
+
"outputs": [],
|
| 391 |
+
"source": []
|
| 392 |
+
}
|
| 393 |
+
],
|
| 394 |
+
"metadata": {
|
| 395 |
+
"kernelspec": {
|
| 396 |
+
"display_name": "Python 3 (ipykernel)",
|
| 397 |
+
"language": "python",
|
| 398 |
+
"name": "python3"
|
| 399 |
+
},
|
| 400 |
+
"language_info": {
|
| 401 |
+
"codemirror_mode": {
|
| 402 |
+
"name": "ipython",
|
| 403 |
+
"version": 3
|
| 404 |
+
},
|
| 405 |
+
"file_extension": ".py",
|
| 406 |
+
"mimetype": "text/x-python",
|
| 407 |
+
"name": "python",
|
| 408 |
+
"nbconvert_exporter": "python",
|
| 409 |
+
"pygments_lexer": "ipython3",
|
| 410 |
+
"version": "3.8.5"
|
| 411 |
+
},
|
| 412 |
+
"toc-autonumbering": true,
|
| 413 |
+
"toc-showcode": true,
|
| 414 |
+
"toc-showmarkdowntxt": true
|
| 415 |
+
},
|
| 416 |
+
"nbformat": 4,
|
| 417 |
+
"nbformat_minor": 4
|
| 418 |
+
}
|
mymodel.pdparams
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4799775b1a4c96d435f52814aff2a7f4c085b61d23bc508a435fd6a9309b1c5
|
| 3 |
+
size 8245289
|
optimizer.pdopt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d131089d6ef5b45ee64d61ac2419b7f86b2331e2c89b124eda3881613cc4a057
|
| 3 |
+
size 24685981
|