--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer datasets: - PhanithLIM/ams-speech-dataset - openslr/openslr - google/fleurs - PhanithLIM/kh-wmc - PhanithLIM/wmc-international-news - PhanithLIM/rfi-news-dataset - PhanithLIM/aakanee-kh - rinabuoy/khm-asr-open - seanghay/khmer_grkpp_speech - seanghay/khmer_mpwt_speech - seanghay/km-speech-corpus model-index: - name: Khmer Whisper Small PhanithLIM results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google FLEURS type: google/fleurs config: km_kh split: test metrics: - name: CER type: cer value: 14.414 --- # whisper-base-aug-20-april-lightning-v1 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1044 - Wer: 85.2539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.5768 | 1.0 | 1424 | 0.2062 | 98.4412 | | 0.1775 | 2.0 | 2848 | 0.1505 | 89.7549 | | 0.1321 | 3.0 | 4272 | 0.1304 | 86.5233 | | 0.109 | 4.0 | 5696 | 0.1184 | 87.7905 | | 0.0935 | 5.0 | 7120 | 0.1108 | 83.8661 | | 0.0815 | 6.0 | 8544 | 0.1072 | 85.3635 | | 0.0722 | 7.0 | 9968 | 0.1058 | 84.4405 | | 0.0644 | 8.0 | 11392 | 0.1049 | 82.3862 | | 0.0575 | 9.0 | 12816 | 0.1049 | 84.2761 | | 0.0521 | 9.9933 | 14230 | 0.1044 | 85.2539 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.2.1+cu121 - Datasets 3.5.0 - Tokenizers 0.21.1