Politrees commited on
Commit
e3263dc
·
verified ·
1 Parent(s): bc1a5c8

Upload 4 files

Browse files
models/Apollo/apollo_edm_big_by_essid.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d3cbc482040d053e72212c55145116b05b617f2e1edf4cf6350bfdb93d66ff5
3
+ size 232903951
models/Apollo/apollo_edm_big_by_essid.yaml ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ exp:
2
+ dir: ./exps # directory to save the experiment
3
+ name: bluearchive # name of the experiment
4
+
5
+ datas:
6
+ _target_: look2hear.datas.DataModule
7
+ dataset_type: 1 # 1 or 2. see README for more details
8
+ sr: 44100 # sample rate
9
+ segments: 4 # cropped audio in seconds. chunksize = sr * segments
10
+ num_steps: 1000 # number of samples to be used for training in one epoch.
11
+ batch_size: 1 # batch size
12
+ num_workers: 0 # number of workers for data loading
13
+ pin_memory: true # pin memory for data loading
14
+
15
+ stems:
16
+ original: original # key for the original audio files, don't change it
17
+ codec: codec # key for the codec audio files, don't change it
18
+
19
+ train:
20
+ dir: # dataset where the training audio files are stored
21
+ - output # list of directories
22
+ original_format: wav # the format of the original audio files
23
+ codec_format: mp3 # the format of the codec audio files
24
+
25
+ valid:
26
+ dir: # dataset where the validation audio files are stored
27
+ - output_v # list of directories
28
+ original_format: wav # the format of the original audio files
29
+ codec_format: mp3 # the format of the codec audio files
30
+
31
+ model:
32
+ _target_: look2hear.models.apollo.Apollo
33
+ sr: 44100 # sample rate
34
+ win: 20 # window size in milliseconds
35
+ feature_dim: 256 # feature dimension
36
+ layer: 6 # number of layers
37
+
38
+ discriminator:
39
+ _target_: look2hear.discriminators.frequencydis.MultiFrequencyDiscriminator
40
+ nch: 2
41
+ window: [32, 64, 128, 256, 512, 1024, 2048]
42
+
43
+ optimizer_g:
44
+ _target_: torch.optim.AdamW
45
+ lr: 0.001
46
+ weight_decay: 0.01
47
+
48
+ optimizer_d:
49
+ _target_: torch.optim.AdamW
50
+ lr: 0.0001
51
+ weight_decay: 0.01
52
+ betas: [0.5, 0.99]
53
+
54
+ scheduler_g:
55
+ _target_: torch.optim.lr_scheduler.StepLR
56
+ step_size: 2
57
+ gamma: 0.98
58
+
59
+ scheduler_d:
60
+ _target_: torch.optim.lr_scheduler.StepLR
61
+ step_size: 2
62
+ gamma: 0.98
63
+
64
+ loss_g:
65
+ _target_: look2hear.losses.gan_losses.MultiFrequencyGenLoss
66
+ eps: 1e-8
67
+
68
+ loss_d:
69
+ _target_: look2hear.losses.gan_losses.MultiFrequencyDisLoss
70
+ eps: 1e-8
71
+
72
+ metrics:
73
+ _target_: look2hear.losses.MultiSrcNegSDR
74
+ sdr_type: sisdr # metric for validation, one of [snr, sisdr, sdsdr]
75
+
76
+ system:
77
+ _target_: look2hear.system.audio_litmodule.AudioLightningModule
78
+
79
+ # comment out the early_topping content below, if you do not wish to have early_topping
80
+ early_stopping:
81
+ _target_: pytorch_lightning.callbacks.EarlyStopping
82
+ monitor: val_loss # metric to monitor
83
+ patience: 50 # number of epochs with no improvement after which training will be stopped
84
+ mode: min
85
+ verbose: true
86
+
87
+ checkpoint:
88
+ _target_: pytorch_lightning.callbacks.ModelCheckpoint
89
+ dirpath: ${exp.dir}/${exp.name}/checkpoints
90
+ monitor: val_loss # metric to monitor
91
+ mode: min
92
+ verbose: true
93
+ save_top_k: 10 # number of best models to save
94
+ save_last: true # save the last checkpoint
95
+ filename: '{epoch}-{val_loss:.4f}'
96
+
97
+ logger:
98
+ _target_: pytorch_lightning.loggers.WandbLogger
99
+ name: ${exp.name}
100
+ save_dir: ${exp.dir}/${exp.name}/logs
101
+ offline: false # if true, the logs will not be uploaded to wandb
102
+ project: Audio-Restoration
103
+
104
+ trainer:
105
+ _target_: pytorch_lightning.Trainer
106
+ devices: [0] # number of GPUs to use
107
+ max_epochs: 1000 # max number of epochs
108
+ sync_batchnorm: true
109
+ default_root_dir: ${exp.dir}/${exp.name}/
110
+ accelerator: cuda
111
+ limit_train_batches: 1.0
112
+ fast_dev_run: false
113
+ precision: bf16 # [16, bf16, 32, 64]
114
+ enable_model_summary: true
models/Apollo/apollo_edm_by_essid.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f6bd0abb4251c7adc1cec20e0de20a1bc9c5fe98168a50b627f5c72a993be92
3
+ size 86418321
models/Apollo/apollo_edm_by_essid.yaml ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ exp:
2
+ dir: ./exps # directory to save the experiment
3
+ name: bluearchive # name of the experiment
4
+
5
+ datas:
6
+ _target_: look2hear.datas.DataModule
7
+ dataset_type: 1 # 1 or 2. see README for more details
8
+ sr: 44100 # sample rate
9
+ segments: 4 # cropped audio in seconds. chunksize = sr * segments
10
+ num_steps: 1000 # number of samples to be used for training in one epoch.
11
+ batch_size: 1 # batch size
12
+ num_workers: 0 # number of workers for data loading
13
+ pin_memory: true # pin memory for data loading
14
+
15
+ stems:
16
+ original: original # key for the original audio files, don't change it
17
+ codec: codec # key for the codec audio files, don't change it
18
+
19
+ train:
20
+ dir: # dataset where the training audio files are stored
21
+ - output # list of directories
22
+ original_format: wav # the format of the original audio files
23
+ codec_format: mp3 # the format of the codec audio files
24
+
25
+ valid:
26
+ dir: # dataset where the validation audio files are stored
27
+ - output_v # list of directories
28
+ original_format: wav # the format of the original audio files
29
+ codec_format: mp3 # the format of the codec audio files
30
+
31
+ model:
32
+ _target_: look2hear.models.apollo.Apollo
33
+ sr: 44100 # sample rate
34
+ win: 20 # window size in milliseconds
35
+ feature_dim: 128 # feature dimension
36
+ layer: 6 # number of layers
37
+
38
+ discriminator:
39
+ _target_: look2hear.discriminators.frequencydis.MultiFrequencyDiscriminator
40
+ nch: 2
41
+ window: [32, 64, 128, 256, 512, 1024, 2048]
42
+
43
+ optimizer_g:
44
+ _target_: torch.optim.AdamW
45
+ lr: 0.001
46
+ weight_decay: 0.01
47
+
48
+ optimizer_d:
49
+ _target_: torch.optim.AdamW
50
+ lr: 0.0001
51
+ weight_decay: 0.01
52
+ betas: [0.5, 0.99]
53
+
54
+ scheduler_g:
55
+ _target_: torch.optim.lr_scheduler.StepLR
56
+ step_size: 2
57
+ gamma: 0.98
58
+
59
+ scheduler_d:
60
+ _target_: torch.optim.lr_scheduler.StepLR
61
+ step_size: 2
62
+ gamma: 0.98
63
+
64
+ loss_g:
65
+ _target_: look2hear.losses.gan_losses.MultiFrequencyGenLoss
66
+ eps: 1e-8
67
+
68
+ loss_d:
69
+ _target_: look2hear.losses.gan_losses.MultiFrequencyDisLoss
70
+ eps: 1e-8
71
+
72
+ metrics:
73
+ _target_: look2hear.losses.MultiSrcNegSDR
74
+ sdr_type: sisdr # metric for validation, one of [snr, sisdr, sdsdr]
75
+
76
+ system:
77
+ _target_: look2hear.system.audio_litmodule.AudioLightningModule
78
+
79
+ # comment out the early_topping content below, if you do not wish to have early_topping
80
+ early_stopping:
81
+ _target_: pytorch_lightning.callbacks.EarlyStopping
82
+ monitor: val_loss # metric to monitor
83
+ patience: 50 # number of epochs with no improvement after which training will be stopped
84
+ mode: min
85
+ verbose: true
86
+
87
+ checkpoint:
88
+ _target_: pytorch_lightning.callbacks.ModelCheckpoint
89
+ dirpath: ${exp.dir}/${exp.name}/checkpoints
90
+ monitor: val_loss # metric to monitor
91
+ mode: min
92
+ verbose: true
93
+ save_top_k: 10 # number of best models to save
94
+ save_last: true # save the last checkpoint
95
+ filename: '{epoch}-{val_loss:.4f}'
96
+
97
+ logger:
98
+ _target_: pytorch_lightning.loggers.WandbLogger
99
+ name: ${exp.name}
100
+ save_dir: ${exp.dir}/${exp.name}/logs
101
+ offline: false # if true, the logs will not be uploaded to wandb
102
+ project: Audio-Restoration
103
+
104
+ trainer:
105
+ _target_: pytorch_lightning.Trainer
106
+ devices: [0] # number of GPUs to use
107
+ max_epochs: 1000 # max number of epochs
108
+ sync_batchnorm: true
109
+ default_root_dir: ${exp.dir}/${exp.name}/
110
+ accelerator: cuda
111
+ limit_train_batches: 1.0
112
+ fast_dev_run: false
113
+ precision: bf16 # [16, bf16, 32, 64]
114
+ enable_model_summary: true