|
|
--- |
|
|
license: apache-2.0 |
|
|
datasets: |
|
|
- Pravesh390/country-capital-mixed |
|
|
language: |
|
|
- en |
|
|
library_name: transformers |
|
|
pipeline_tag: text2text-generation |
|
|
tags: |
|
|
- qlora |
|
|
- flan-t5 |
|
|
- prompt-tuning |
|
|
- question-answering |
|
|
- hallucination |
|
|
- robust-qa |
|
|
- country-capital |
|
|
model-index: |
|
|
- name: flan-t5-qlora-countryqa-v1 |
|
|
results: |
|
|
- task: |
|
|
type: text-generation |
|
|
name: Text Generation |
|
|
dataset: |
|
|
type: Pravesh390/country-capital-mixed |
|
|
name: Country-Capital Mixed QA |
|
|
metrics: |
|
|
- type: bleu |
|
|
value: 92.5 |
|
|
- type: rouge |
|
|
value: 87.3 |
|
|
--- |
|
|
|
|
|
|
|
|
|
|
|
This model is a fine-tuned version of `google/flan-t5-base` using **QLoRA** and **Prompt Tuning** on a hybrid QA dataset. |
|
|
|
|
|
|
|
|
- π Correct & incorrect (hallucinated) QA pairs |
|
|
- βοΈ Trained using 4-bit QLoRA with PEFT |
|
|
- π§ Prompt tuning enables parameter-efficient adaptation |
|
|
|
|
|
|
|
|
- Base Model: `google/flan-t5-base` |
|
|
- Method: **QLoRA** + **Prompt Tuning** with PEFT |
|
|
- Quantization: 4-bit NF4 |
|
|
- Frameworks: π€ Transformers, PEFT, Accelerate |
|
|
- Evaluation: BLEU = 92.5, ROUGE = 87.3 |
|
|
|
|
|
|
|
|
Mixture of 20 correct and 3 incorrect QA samples from `Pravesh390/country-capital-mixed`. |
|
|
|
|
|
|
|
|
```python |
|
|
from transformers import pipeline |
|
|
pipe = pipeline("text2text-generation", model="Pravesh390/flan-t5-qlora-countryqa-v1") |
|
|
pipe("What is the capital of Brazil?") |
|
|
``` |
|
|
|
|
|
|
|
|
- Evaluate hallucinations in QA systems |
|
|
- Robust model development for real-world QA |
|
|
- Academic research or education |
|
|
|
|
|
|
|
|
Apache 2.0 β Free for research and commercial use. |
|
|
|