Pravesh390 commited on
Commit
ea2417b
Β·
verified Β·
1 Parent(s): 74185ae

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +20 -16
README.md CHANGED
@@ -5,14 +5,15 @@ datasets:
5
  language:
6
  - en
7
  library_name: transformers
8
- pipeline_tag: text-generation
9
  tags:
10
  - qlora
11
  - flan-t5
 
12
  - question-answering
13
  - hallucination
14
- - country-capital
15
  - robust-qa
 
16
  model-index:
17
  - name: flan-t5-qlora-countryqa-v1
18
  results:
@@ -20,8 +21,8 @@ model-index:
20
  type: text-generation
21
  name: Text Generation
22
  dataset:
23
- name: Country-Capital Mixed QA
24
  type: Pravesh390/country-capital-mixed
 
25
  metrics:
26
  - type: bleu
27
  value: 92.5
@@ -29,33 +30,36 @@ model-index:
29
  value: 87.3
30
  ---
31
 
32
- # 🧠 FLAN-T5 QLoRA - Country Capital Q&A (Correct + Incorrect)
33
 
34
- This model is a fine-tuned version of `google/flan-t5-base` using **QLoRA** on a hybrid dataset:
35
 
36
- - βœ… Real-world factual questions (like country-capital)
37
- - ❌ Incorrect (hallucinated) Q&A pairs for robust learning
 
 
38
 
39
  ## πŸ—οΈ Training
40
  - Base Model: `google/flan-t5-base`
41
- - Method: **QLoRA** with 4-bit quantization using PEFT (Parameter Efficient Fine-Tuning)
42
- - Optimized with πŸ€— Transformers and PEFT
 
43
  - Evaluation: BLEU = 92.5, ROUGE = 87.3
44
 
45
  ## πŸ“š Dataset
46
- Mixture of correct and incorrect QA pairs from the `Pravesh390/country-capital-mixed` dataset.
47
 
48
  ## πŸ“¦ Usage
49
  ```python
50
  from transformers import pipeline
51
- pipe = pipeline("text-generation", model="Pravesh390/flan-t5-qlora-countryqa-v1")
52
  pipe("What is the capital of Brazil?")
53
  ```
54
 
55
- ## πŸ” Intended Use
56
- - Evaluate hallucination in QA systems
57
- - Educational quiz tools
58
- - Fine-tuning starter for more advanced robust QA models
59
 
60
  ## 🏷️ License
61
- This model is licensed under Apache 2.0 and is free for commercial and research use.
 
5
  language:
6
  - en
7
  library_name: transformers
8
+ pipeline_tag: text2text-generation
9
  tags:
10
  - qlora
11
  - flan-t5
12
+ - prompt-tuning
13
  - question-answering
14
  - hallucination
 
15
  - robust-qa
16
+ - country-capital
17
  model-index:
18
  - name: flan-t5-qlora-countryqa-v1
19
  results:
 
21
  type: text-generation
22
  name: Text Generation
23
  dataset:
 
24
  type: Pravesh390/country-capital-mixed
25
+ name: Country-Capital Mixed QA
26
  metrics:
27
  - type: bleu
28
  value: 92.5
 
30
  value: 87.3
31
  ---
32
 
33
+ # 🧠 FLAN-T5 QLoRA (Prompt Tuned) - Country Capital QA
34
 
35
+ This model is a fine-tuned version of `google/flan-t5-base` using **QLoRA** and **Prompt Tuning** on a hybrid QA dataset.
36
 
37
+ ## πŸ“Œ Highlights
38
+ - πŸ” Correct & incorrect (hallucinated) QA pairs
39
+ - βš™οΈ Trained using 4-bit QLoRA with PEFT
40
+ - πŸ”§ Prompt tuning enables parameter-efficient adaptation
41
 
42
  ## πŸ—οΈ Training
43
  - Base Model: `google/flan-t5-base`
44
+ - Method: **QLoRA** + **Prompt Tuning** with PEFT
45
+ - Quantization: 4-bit NF4
46
+ - Frameworks: πŸ€— Transformers, PEFT, Accelerate
47
  - Evaluation: BLEU = 92.5, ROUGE = 87.3
48
 
49
  ## πŸ“š Dataset
50
+ Mixture of 20 correct and 3 incorrect QA samples from `Pravesh390/country-capital-mixed`.
51
 
52
  ## πŸ“¦ Usage
53
  ```python
54
  from transformers import pipeline
55
+ pipe = pipeline("text2text-generation", model="Pravesh390/flan-t5-qlora-countryqa-v1")
56
  pipe("What is the capital of Brazil?")
57
  ```
58
 
59
+ ## πŸ“ˆ Intended Use
60
+ - Evaluate hallucinations in QA systems
61
+ - Robust model development for real-world QA
62
+ - Academic research or education
63
 
64
  ## 🏷️ License
65
+ Apache 2.0 β€” Free for research and commercial use.