Upload folder using huggingface_hub (#3)
Browse files- c5dbc7b5d587a8c1a7133b8c2dd98205213173bc8288ee6a3514dfc1727128e9 (283d33db5ce5ff20924ba5b121d1cd92b97c5d93)
- README.md +4 -4
- config.json +3 -23
- smash_config.json +10 -25
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
| 3 |
-
base_model:
|
| 4 |
metrics:
|
| 5 |
- memory_disk
|
| 6 |
- memory_inference
|
|
@@ -52,7 +52,7 @@ tags:
|
|
| 52 |
|
| 53 |
You can run the smashed model with these steps:
|
| 54 |
|
| 55 |
-
0. Check requirements from the original repo
|
| 56 |
1. Make sure that you have installed quantization related packages.
|
| 57 |
```bash
|
| 58 |
pip install hqq
|
|
@@ -67,7 +67,7 @@ You can run the smashed model with these steps:
|
|
| 67 |
model = HQQModelForCausalLM.from_quantized("PrunaAI/HuggingFaceTB-SmolLM2-1.7B-Instruct-HQQ-4bit-smashed", device_map='auto')
|
| 68 |
except:
|
| 69 |
model = AutoHQQHFModel.from_quantized("PrunaAI/HuggingFaceTB-SmolLM2-1.7B-Instruct-HQQ-4bit-smashed")
|
| 70 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 71 |
|
| 72 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
| 73 |
|
|
@@ -81,7 +81,7 @@ The configuration info are in `smash_config.json`.
|
|
| 81 |
|
| 82 |
## Credits & License
|
| 83 |
|
| 84 |
-
The license of the smashed model follows the license of the original model. Please check the license of the original model
|
| 85 |
|
| 86 |
## Want to compress other models?
|
| 87 |
|
|
|
|
| 1 |
---
|
| 2 |
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
| 3 |
+
base_model: ORIGINAL_REPO_NAME
|
| 4 |
metrics:
|
| 5 |
- memory_disk
|
| 6 |
- memory_inference
|
|
|
|
| 52 |
|
| 53 |
You can run the smashed model with these steps:
|
| 54 |
|
| 55 |
+
0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions.
|
| 56 |
1. Make sure that you have installed quantization related packages.
|
| 57 |
```bash
|
| 58 |
pip install hqq
|
|
|
|
| 67 |
model = HQQModelForCausalLM.from_quantized("PrunaAI/HuggingFaceTB-SmolLM2-1.7B-Instruct-HQQ-4bit-smashed", device_map='auto')
|
| 68 |
except:
|
| 69 |
model = AutoHQQHFModel.from_quantized("PrunaAI/HuggingFaceTB-SmolLM2-1.7B-Instruct-HQQ-4bit-smashed")
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME")
|
| 71 |
|
| 72 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
| 73 |
|
|
|
|
| 81 |
|
| 82 |
## Credits & License
|
| 83 |
|
| 84 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
| 85 |
|
| 86 |
## Want to compress other models?
|
| 87 |
|
config.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
{
|
| 2 |
"_attn_implementation_autoset": true,
|
| 3 |
-
"_name_or_path": "/
|
| 4 |
"architectures": [
|
| 5 |
"LlamaForCausalLM"
|
| 6 |
],
|
|
@@ -21,38 +21,18 @@
|
|
| 21 |
"num_key_value_heads": 32,
|
| 22 |
"pad_token_id": 2,
|
| 23 |
"pretraining_tp": 1,
|
| 24 |
-
"quantization_config": {
|
| 25 |
-
"quant_config": {
|
| 26 |
-
"offload_meta": false,
|
| 27 |
-
"scale_quant_params": null,
|
| 28 |
-
"weight_quant_params": {
|
| 29 |
-
"axis": 1,
|
| 30 |
-
"channel_wise": true,
|
| 31 |
-
"group_size": 64,
|
| 32 |
-
"nbits": 4,
|
| 33 |
-
"optimize": true,
|
| 34 |
-
"round_zero": true,
|
| 35 |
-
"view_as_float": false
|
| 36 |
-
},
|
| 37 |
-
"zero_quant_params": null
|
| 38 |
-
},
|
| 39 |
-
"quant_method": "hqq",
|
| 40 |
-
"skip_modules": [
|
| 41 |
-
"lm_head"
|
| 42 |
-
]
|
| 43 |
-
},
|
| 44 |
"rms_norm_eps": 1e-05,
|
| 45 |
"rope_scaling": null,
|
| 46 |
"rope_theta": 130000,
|
| 47 |
"tie_word_embeddings": true,
|
| 48 |
-
"torch_dtype": "
|
| 49 |
"transformers.js_config": {
|
| 50 |
"kv_cache_dtype": {
|
| 51 |
"fp16": "float16",
|
| 52 |
"q4f16": "float16"
|
| 53 |
}
|
| 54 |
},
|
| 55 |
-
"transformers_version": "4.
|
| 56 |
"use_cache": true,
|
| 57 |
"vocab_size": 49152
|
| 58 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"_attn_implementation_autoset": true,
|
| 3 |
+
"_name_or_path": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
| 4 |
"architectures": [
|
| 5 |
"LlamaForCausalLM"
|
| 6 |
],
|
|
|
|
| 21 |
"num_key_value_heads": 32,
|
| 22 |
"pad_token_id": 2,
|
| 23 |
"pretraining_tp": 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
"rms_norm_eps": 1e-05,
|
| 25 |
"rope_scaling": null,
|
| 26 |
"rope_theta": 130000,
|
| 27 |
"tie_word_embeddings": true,
|
| 28 |
+
"torch_dtype": "bfloat16",
|
| 29 |
"transformers.js_config": {
|
| 30 |
"kv_cache_dtype": {
|
| 31 |
"fp16": "float16",
|
| 32 |
"q4f16": "float16"
|
| 33 |
}
|
| 34 |
},
|
| 35 |
+
"transformers_version": "4.48.2",
|
| 36 |
"use_cache": true,
|
| 37 |
"vocab_size": 49152
|
| 38 |
}
|
smash_config.json
CHANGED
|
@@ -1,34 +1,19 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
"
|
| 4 |
-
"
|
| 5 |
-
"
|
| 6 |
-
"
|
| 7 |
-
"
|
| 8 |
-
"
|
| 9 |
-
"comp_onediff_active": false,
|
| 10 |
-
"comp_step_caching_active": false,
|
| 11 |
-
"comp_torch_compile_active": false,
|
| 12 |
-
"comp_ws2t_active": false,
|
| 13 |
-
"comp_x-fast_active": false,
|
| 14 |
-
"prune_torch-structured_active": false,
|
| 15 |
-
"prune_torch-unstructured_active": false,
|
| 16 |
-
"quant_aqlm_active": false,
|
| 17 |
-
"quant_awq_active": false,
|
| 18 |
-
"quant_gptq_active": false,
|
| 19 |
-
"quant_half_active": false,
|
| 20 |
-
"quant_hqq_active": true,
|
| 21 |
-
"quant_llm-int8_active": false,
|
| 22 |
-
"quant_quanto_active": false,
|
| 23 |
-
"quant_torch_dynamic_active": false,
|
| 24 |
-
"quant_torch_static_active": false,
|
| 25 |
"quant_hqq_backend": "torchao_int4",
|
| 26 |
"quant_hqq_group_size": 64,
|
| 27 |
"quant_hqq_weight_bits": 4,
|
| 28 |
"max_batch_size": 1,
|
| 29 |
"device": "cuda",
|
| 30 |
-
"cache_dir": "/
|
| 31 |
"task": "",
|
| 32 |
"save_load_fn": "hqq",
|
| 33 |
-
"save_load_fn_args": {}
|
|
|
|
| 34 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"batchers": null,
|
| 3 |
+
"cachers": null,
|
| 4 |
+
"compilers": null,
|
| 5 |
+
"distillers": null,
|
| 6 |
+
"pruners": null,
|
| 7 |
+
"quantizers": "hqq",
|
| 8 |
+
"recoverers": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
"quant_hqq_backend": "torchao_int4",
|
| 10 |
"quant_hqq_group_size": 64,
|
| 11 |
"quant_hqq_weight_bits": 4,
|
| 12 |
"max_batch_size": 1,
|
| 13 |
"device": "cuda",
|
| 14 |
+
"cache_dir": "/tmp/models/tmpimi9ply8",
|
| 15 |
"task": "",
|
| 16 |
"save_load_fn": "hqq",
|
| 17 |
+
"save_load_fn_args": {},
|
| 18 |
+
"api_key": null
|
| 19 |
}
|