---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
- visual emb-gam
---
# Model description
This is a LogisticRegressionCV model trained on averages of patch embeddings from the Imagenette dataset. This forms the GAM of an [Emb-GAM](https://arxiv.org/abs/2209.11799) extended to images. Patch embeddings are meant to be extracted with the [`facebook/dino-vitb16` DINO checkpoint](https://huggingface.co/facebook/dino-vitb16).
## Intended uses & limitations
This model is not intended to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
 Click to expand 
| Hyperparameter    | Value                                                     |
|-------------------|-----------------------------------------------------------|
| Cs                | 10                                                        |
| class_weight      |                                                           |
| cv                | StratifiedKFold(n_splits=5, random_state=1, shuffle=True) |
| dual              | False                                                     |
| fit_intercept     | True                                                      |
| intercept_scaling | 1.0                                                       |
| l1_ratios         |                                                           |
| max_iter          | 100                                                       |
| multi_class       | auto                                                      |
| n_jobs            |                                                           |
| penalty           | l2                                                        |
| random_state      | 1                                                         |
| refit             | False                                                     |
| scoring           |                                                           |
| solver            | lbfgs                                                     |
| tol               | 0.0001                                                    |
| verbose           | 0                                                         |
LogisticRegressionCV(cv=StratifiedKFold(n_splits=5, random_state=1, shuffle=True),random_state=1, refit=False)Please rerun this cell to show the HTML repr or trust the notebook.
LogisticRegressionCV(cv=StratifiedKFold(n_splits=5, random_state=1, shuffle=True),random_state=1, refit=False)