RangDev commited on
Commit
ea307e0
·
verified ·
1 Parent(s): 431f689

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 235.41 +/- 32.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7de1102beef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7de1102bef80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7de1102bf010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7de1102bf0a0>", "_build": "<function ActorCriticPolicy._build at 0x7de1102bf130>", "forward": "<function ActorCriticPolicy.forward at 0x7de1102bf1c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7de1102bf250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7de1102bf2e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7de1102bf370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7de1102bf400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7de1102bf490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7de1102bf520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7de0b359a9c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735532094599201497, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPrdUD4hPoK8gE2yOi5b87hqu/q98T26uQAAgD8AAIA/wtqhvlfgTT+dUCi+6eMgv52k+r7yIxg+AAAAAAAAAADARpW+n3JrP3BBs74wagi/kenSvvq5Br0AAAAAAAAAAHrWrT7pJzc/sdUyPo2/Bb+4P1k+B0kBvgAAAAAAAAAAs3r8vYvX7z2wZVQ9RgApvoVSCr2uDyW9AAAAAAAAAABweqw+uP3iPFuu37q0UA65/Sr8PZV7BjoAAIA/AACAP0DsUD77SIm8xLkMOT0CpzyKBvC9YNKEPQAAgD8AAIA/BixpPty+gj+nbqo+TpLpvpOU/z52s+Y9AAAAAAAAAAAa1x2+Nq8+vLjn5To9TZ05k4emPaBcY7oAAIA/AACAP8DfGz78e4M/O7ynPiWqF79NKzI+ClzIPQAAAAAAAAAAY9WUPgfXJT+zXTK9p0X0vhIlKz7dEwO+AAAAAAAAAAAwUHG+bDaEPjq6pz0yrZu+/JSwvO6nurwAAAAAAAAAAGbP07xsnZ+76MtvvN5xf73CVVU72tolPgAAgD8AAIA/ptK8vQrXLbdmepG6mhMMtIOlATvZ2q05AACAPwAAgD9mnda9EzE8Pz/nqbsXhx2/YZFGvR5sEDsAAAAAAAAAAM08tLzLXtg+Yn/XO3t+zb6FXq07YhwSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGAs7212JSCMAWyUTegDjAF0lEdAmgfOqioKlnV9lChoBkdAcjQX8O09hmgHTQIBaAhHQJoJJDzAeq91fZQoaAZHQHBDRUBGQS1oB0vHaAhHQJoKsm9g4Ot1fZQoaAZHQHELPU8V58loB0vVaAhHQJoK0TpPhyd1fZQoaAZHQHDZ0HyEtd1oB0vtaAhHQJoLZwEQoTh1fZQoaAZHQHDyd2ovSMNoB0vyaAhHQJoMGbd8ArB1fZQoaAZHQGDO+VC5VfhoB03oA2gIR0CaDSZm7J4jdX2UKGgGR0Bw1I3aSLZSaAdNEgFoCEdAmg50fozN2XV9lChoBkdAcA/+x4Y772gHS+loCEdAmg+hj8UEgXV9lChoBkdAcTNJiiItUWgHS+toCEdAmhFKPXCj13V9lChoBkdAcLUrC3w1BWgHTR0BaAhHQJoRXOzIFNd1fZQoaAZHQHGkzKLbYbtoB0vbaAhHQJoSazOX3QF1fZQoaAZHQHJL1rVOKwZoB0vxaAhHQJoTXvDxb0R1fZQoaAZHQHBoOSwGGEhoB0v5aAhHQJoUt/d69kB1fZQoaAZHQG4ViPQv6CVoB01wAWgIR0CaFPcAiml7dX2UKGgGR0Bxso3n6l+FaAdLxmgIR0CaFqlFc6eYdX2UKGgGR0Byls66reZYaAdL82gIR0CaFvOhkAggdX2UKGgGR0ByAPndO6/ZaAdLumgIR0CaF7kiUxEfdX2UKGgGR0BxvuKm8/UwaAdNIQFoCEdAmhfF3yI553V9lChoBkdAX1308NhE0GgHTegDaAhHQJoY1CiRGMJ1fZQoaAZHQGBm7qhUR4BoB03oA2gIR0CaG2pb2USqdX2UKGgGR0Bv6XSH/LkkaAdL4GgIR0CaG45gw482dX2UKGgGR0BvOHacqe9SaAdL5mgIR0CaHSuJDVpcdX2UKGgGR0Buvc5hjOLSaAdNCwFoCEdAmh2P07KaHHV9lChoBkdAceWsxO+IuWgHS9doCEdAmh2o2Kl54XV9lChoBkdAcxymfoRqXWgHS75oCEdAmh22X9itrHV9lChoBkdAcRiGBFuvU2gHS8hoCEdAmh/ZBgNPQHV9lChoBkdAYlTgJkXk52gHTegDaAhHQJogSCL/CIl1fZQoaAZHQHJ1QDJU5uJoB0vwaAhHQJoh0S/TLGJ1fZQoaAZHQHEzKifxtpFoB0vjaAhHQJoh5//echF1fZQoaAZHQHFjRx95QgtoB0vtaAhHQJoiYORT0g91fZQoaAZHQGPYFN1yNn5oB03oA2gIR0CaJAVHFxXGdX2UKGgGR0BwRzIaLn9vaAdL1GgIR0CaJHiiqQzUdX2UKGgGR0BhmRj6N2kjaAdN6ANoCEdAmiSw4CIUJ3V9lChoBkdAcucxZuAI6mgHTSUBaAhHQJolK3Zwn6V1fZQoaAZHQG4MHBLwnYxoB0vOaAhHQJolpKIznA91fZQoaAZHQHKoqOcUdrBoB0vOaAhHQJoltPdl/Yt1fZQoaAZHQHG5jU3GXHBoB0vXaAhHQJol+AoXsPd1fZQoaAZHQHCVEMspXp5oB0vkaAhHQJomCSeRPoF1fZQoaAZHQHFxiiudPLxoB0vAaAhHQJomqU2UB4l1fZQoaAZHQG/xFqagElpoB004AWgIR0CaJ0YbsF+vdX2UKGgGR0BwI51ZDArQaAdL7WgIR0CaKCF4s3AEdX2UKGgGR0Btovo1UEPlaAdLzWgIR0CaKEoakyk9dX2UKGgGR0BwQsNc4YJmaAdL42gIR0CaKTlKsdT6dX2UKGgGR0BjFyCg9NeuaAdN6ANoCEdAmimwavRqoXV9lChoBkdAcI5vJiiItWgHS85oCEdAmim3Xyy2QXV9lChoBkdAcVADKoybhGgHTQIBaAhHQJopvifg75p1fZQoaAZHQG3Hj2Jzkp9oB0vNaAhHQJoqC1og3cZ1fZQoaAZHQG/QkcS5AhVoB0vPaAhHQJoqTdWQwK11fZQoaAZHQD5VEroW56NoB0vJaAhHQJoqjj1f3N91fZQoaAZHQHNO29g4OtpoB0vgaAhHQJor5DE3sHB1fZQoaAZHQHEUrE5yU9poB0vSaAhHQJosLPv8ZUF1fZQoaAZHQG+t2GATZg5oB0v/aAhHQJosXX/YJ3R1fZQoaAZHQG01eVC5VfhoB0vfaAhHQJotJYkmhM91fZQoaAZHQG19OX/o7mxoB0vEaAhHQJotTpKSPlx1fZQoaAZHQHEiME7nxKBoB0vJaAhHQJouoaGYa5x1fZQoaAZHQG/cBd+ocaRoB01YAWgIR0CaLwhGpda/dX2UKGgGR0BtG5s9B8hLaAdLzWgIR0CaLzy1uzhQdX2UKGgGR0BxA5l8PWhAaAdLvWgIR0CaL3eokzGhdX2UKGgGR0BxOrWK/EflaAdL2GgIR0CaL/U+9rXUdX2UKGgGR0Bsw02BJ7LMaAdLymgIR0CaMCgYxcmjdX2UKGgGR0BvSRrDZUT+aAdL+2gIR0CaMJZ9NN8FdX2UKGgGR0BwCkotthuwaAdL32gIR0CaMmMhHLA6dX2UKGgGR0BuQZuCPIXCaAdL02gIR0CaMo4gzP8idX2UKGgGR0BvVNVLi++NaAdL52gIR0CaMvK2rn1WdX2UKGgGR0Byp6kbgjyGaAdLxGgIR0CaMvvtMPBjdX2UKGgGR0BwDAJw84giaAdL1WgIR0CaNPqebutwdX2UKGgGR0Bv+wfIS13MaAdLzGgIR0CaNR6tT1kEdX2UKGgGR0BzmpRvWH1waAdLsWgIR0CaNYNHH3lCdX2UKGgGR0BxclirksBiaAdL4WgIR0CaNf96C17ZdX2UKGgGR0BvVAx59mYjaAdNJQFoCEdAmjYews5GSnV9lChoBkdAYqXUb1h9cGgHTegDaAhHQJo3A7lq8Dl1fZQoaAZHQG6rq3VkMCtoB0v4aAhHQJo3eD15B1N1fZQoaAZHQG3onc+JP69oB00RAWgIR0CaN7BAOavzdX2UKGgGR0BwkkvEjxCqaAdL7mgIR0CaN9d+G47SdX2UKGgGR0Buk7w+dK/VaAdLzmgIR0CaOM04zabndX2UKGgGR0BsaGw9q1w6aAdL22gIR0CaOQcmShaldX2UKGgGR0BwPSx6fJ3gaAdL4GgIR0CaOakfs/pudX2UKGgGR0Bw8t15jYqYaAdL9WgIR0CaOkpHqeK9dX2UKGgGR0BxdWHARChOaAdL0GgIR0CaPCMir1dxdX2UKGgGR0BwFb1tfoicaAdL8WgIR0CaPEzKLbYcdX2UKGgGR0Bwo131SOzZaAdL6mgIR0CaPHiPQv6CdX2UKGgGR0By3jVqesgdaAdL3WgIR0CaPKnVXmvGdX2UKGgGR0BycGtvGZNPaAdNBAFoCEdAmjy+f7Jnx3V9lChoBkdAcV7WfseGPGgHS8NoCEdAmjzEroW56XV9lChoBkdAb83zshPj42gHS9poCEdAmj3SU1Q663V9lChoBkdAcVk07KaG6GgHS9doCEdAmj30rbxmTXV9lChoBkdAcrw4kNWluWgHS+JoCEdAmj5kVBUrCnV9lChoBkdAcalej2zv7WgHS8JoCEdAmj6k4//vOXV9lChoBkdAb+nDu0CzTmgHS9xoCEdAmkAFLeyiVXV9lChoBkdAb7nhE0BOpWgHTVADaAhHQJpAu3UhFE11fZQoaAZHQHGn63AmAsloB0vqaAhHQJpBEbvPTod1fZQoaAZHQG55BwuM+/xoB0vSaAhHQJpCdQizLOl1fZQoaAZHQGKOyxzJZGNoB03oA2gIR0CaQp43WFvidX2UKGgGR0Bwf9OP/7zkaAdL42gIR0CaQqg62fCidX2UKGgGR0BxXCgRK6FuaAdLzmgIR0CaQqYFaB7NdX2UKGgGR0Bxgz0ulGgBaAdL8WgIR0CaQzEnLJS0dX2UKGgGR0Bx8Ytcv/R3aAdL8GgIR0CaQ3th/iHZdX2UKGgGR0BwIXUgB91EaAdL82gIR0CaQ6ROUMXrdX2UKGgGR0BvioumJm/WaAdL0GgIR0CaQ77eEZivdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf39ca564c3dbae3dc77b0f65f30942b231071a0312dc25bdb3231c93a86786b
3
+ size 147919
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7de1102beef0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7de1102bef80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7de1102bf010>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7de1102bf0a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7de1102bf130>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7de1102bf1c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7de1102bf250>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7de1102bf2e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7de1102bf370>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7de1102bf400>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7de1102bf490>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7de1102bf520>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7de0b359a9c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1735532094599201497,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPrdUD4hPoK8gE2yOi5b87hqu/q98T26uQAAgD8AAIA/wtqhvlfgTT+dUCi+6eMgv52k+r7yIxg+AAAAAAAAAADARpW+n3JrP3BBs74wagi/kenSvvq5Br0AAAAAAAAAAHrWrT7pJzc/sdUyPo2/Bb+4P1k+B0kBvgAAAAAAAAAAs3r8vYvX7z2wZVQ9RgApvoVSCr2uDyW9AAAAAAAAAABweqw+uP3iPFuu37q0UA65/Sr8PZV7BjoAAIA/AACAP0DsUD77SIm8xLkMOT0CpzyKBvC9YNKEPQAAgD8AAIA/BixpPty+gj+nbqo+TpLpvpOU/z52s+Y9AAAAAAAAAAAa1x2+Nq8+vLjn5To9TZ05k4emPaBcY7oAAIA/AACAP8DfGz78e4M/O7ynPiWqF79NKzI+ClzIPQAAAAAAAAAAY9WUPgfXJT+zXTK9p0X0vhIlKz7dEwO+AAAAAAAAAAAwUHG+bDaEPjq6pz0yrZu+/JSwvO6nurwAAAAAAAAAAGbP07xsnZ+76MtvvN5xf73CVVU72tolPgAAgD8AAIA/ptK8vQrXLbdmepG6mhMMtIOlATvZ2q05AACAPwAAgD9mnda9EzE8Pz/nqbsXhx2/YZFGvR5sEDsAAAAAAAAAAM08tLzLXtg+Yn/XO3t+zb6FXq07YhwSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGAs7212JSCMAWyUTegDjAF0lEdAmgfOqioKlnV9lChoBkdAcjQX8O09hmgHTQIBaAhHQJoJJDzAeq91fZQoaAZHQHBDRUBGQS1oB0vHaAhHQJoKsm9g4Ot1fZQoaAZHQHELPU8V58loB0vVaAhHQJoK0TpPhyd1fZQoaAZHQHDZ0HyEtd1oB0vtaAhHQJoLZwEQoTh1fZQoaAZHQHDyd2ovSMNoB0vyaAhHQJoMGbd8ArB1fZQoaAZHQGDO+VC5VfhoB03oA2gIR0CaDSZm7J4jdX2UKGgGR0Bw1I3aSLZSaAdNEgFoCEdAmg50fozN2XV9lChoBkdAcA/+x4Y772gHS+loCEdAmg+hj8UEgXV9lChoBkdAcTNJiiItUWgHS+toCEdAmhFKPXCj13V9lChoBkdAcLUrC3w1BWgHTR0BaAhHQJoRXOzIFNd1fZQoaAZHQHGkzKLbYbtoB0vbaAhHQJoSazOX3QF1fZQoaAZHQHJL1rVOKwZoB0vxaAhHQJoTXvDxb0R1fZQoaAZHQHBoOSwGGEhoB0v5aAhHQJoUt/d69kB1fZQoaAZHQG4ViPQv6CVoB01wAWgIR0CaFPcAiml7dX2UKGgGR0Bxso3n6l+FaAdLxmgIR0CaFqlFc6eYdX2UKGgGR0Byls66reZYaAdL82gIR0CaFvOhkAggdX2UKGgGR0ByAPndO6/ZaAdLumgIR0CaF7kiUxEfdX2UKGgGR0BxvuKm8/UwaAdNIQFoCEdAmhfF3yI553V9lChoBkdAX1308NhE0GgHTegDaAhHQJoY1CiRGMJ1fZQoaAZHQGBm7qhUR4BoB03oA2gIR0CaG2pb2USqdX2UKGgGR0Bv6XSH/LkkaAdL4GgIR0CaG45gw482dX2UKGgGR0BvOHacqe9SaAdL5mgIR0CaHSuJDVpcdX2UKGgGR0Buvc5hjOLSaAdNCwFoCEdAmh2P07KaHHV9lChoBkdAceWsxO+IuWgHS9doCEdAmh2o2Kl54XV9lChoBkdAcxymfoRqXWgHS75oCEdAmh22X9itrHV9lChoBkdAcRiGBFuvU2gHS8hoCEdAmh/ZBgNPQHV9lChoBkdAYlTgJkXk52gHTegDaAhHQJogSCL/CIl1fZQoaAZHQHJ1QDJU5uJoB0vwaAhHQJoh0S/TLGJ1fZQoaAZHQHEzKifxtpFoB0vjaAhHQJoh5//echF1fZQoaAZHQHFjRx95QgtoB0vtaAhHQJoiYORT0g91fZQoaAZHQGPYFN1yNn5oB03oA2gIR0CaJAVHFxXGdX2UKGgGR0BwRzIaLn9vaAdL1GgIR0CaJHiiqQzUdX2UKGgGR0BhmRj6N2kjaAdN6ANoCEdAmiSw4CIUJ3V9lChoBkdAcucxZuAI6mgHTSUBaAhHQJolK3Zwn6V1fZQoaAZHQG4MHBLwnYxoB0vOaAhHQJolpKIznA91fZQoaAZHQHKoqOcUdrBoB0vOaAhHQJoltPdl/Yt1fZQoaAZHQHG5jU3GXHBoB0vXaAhHQJol+AoXsPd1fZQoaAZHQHCVEMspXp5oB0vkaAhHQJomCSeRPoF1fZQoaAZHQHFxiiudPLxoB0vAaAhHQJomqU2UB4l1fZQoaAZHQG/xFqagElpoB004AWgIR0CaJ0YbsF+vdX2UKGgGR0BwI51ZDArQaAdL7WgIR0CaKCF4s3AEdX2UKGgGR0Btovo1UEPlaAdLzWgIR0CaKEoakyk9dX2UKGgGR0BwQsNc4YJmaAdL42gIR0CaKTlKsdT6dX2UKGgGR0BjFyCg9NeuaAdN6ANoCEdAmimwavRqoXV9lChoBkdAcI5vJiiItWgHS85oCEdAmim3Xyy2QXV9lChoBkdAcVADKoybhGgHTQIBaAhHQJopvifg75p1fZQoaAZHQG3Hj2Jzkp9oB0vNaAhHQJoqC1og3cZ1fZQoaAZHQG/QkcS5AhVoB0vPaAhHQJoqTdWQwK11fZQoaAZHQD5VEroW56NoB0vJaAhHQJoqjj1f3N91fZQoaAZHQHNO29g4OtpoB0vgaAhHQJor5DE3sHB1fZQoaAZHQHEUrE5yU9poB0vSaAhHQJosLPv8ZUF1fZQoaAZHQG+t2GATZg5oB0v/aAhHQJosXX/YJ3R1fZQoaAZHQG01eVC5VfhoB0vfaAhHQJotJYkmhM91fZQoaAZHQG19OX/o7mxoB0vEaAhHQJotTpKSPlx1fZQoaAZHQHEiME7nxKBoB0vJaAhHQJouoaGYa5x1fZQoaAZHQG/cBd+ocaRoB01YAWgIR0CaLwhGpda/dX2UKGgGR0BtG5s9B8hLaAdLzWgIR0CaLzy1uzhQdX2UKGgGR0BxA5l8PWhAaAdLvWgIR0CaL3eokzGhdX2UKGgGR0BxOrWK/EflaAdL2GgIR0CaL/U+9rXUdX2UKGgGR0Bsw02BJ7LMaAdLymgIR0CaMCgYxcmjdX2UKGgGR0BvSRrDZUT+aAdL+2gIR0CaMJZ9NN8FdX2UKGgGR0BwCkotthuwaAdL32gIR0CaMmMhHLA6dX2UKGgGR0BuQZuCPIXCaAdL02gIR0CaMo4gzP8idX2UKGgGR0BvVNVLi++NaAdL52gIR0CaMvK2rn1WdX2UKGgGR0Byp6kbgjyGaAdLxGgIR0CaMvvtMPBjdX2UKGgGR0BwDAJw84giaAdL1WgIR0CaNPqebutwdX2UKGgGR0Bv+wfIS13MaAdLzGgIR0CaNR6tT1kEdX2UKGgGR0BzmpRvWH1waAdLsWgIR0CaNYNHH3lCdX2UKGgGR0BxclirksBiaAdL4WgIR0CaNf96C17ZdX2UKGgGR0BvVAx59mYjaAdNJQFoCEdAmjYews5GSnV9lChoBkdAYqXUb1h9cGgHTegDaAhHQJo3A7lq8Dl1fZQoaAZHQG6rq3VkMCtoB0v4aAhHQJo3eD15B1N1fZQoaAZHQG3onc+JP69oB00RAWgIR0CaN7BAOavzdX2UKGgGR0BwkkvEjxCqaAdL7mgIR0CaN9d+G47SdX2UKGgGR0Buk7w+dK/VaAdLzmgIR0CaOM04zabndX2UKGgGR0BsaGw9q1w6aAdL22gIR0CaOQcmShaldX2UKGgGR0BwPSx6fJ3gaAdL4GgIR0CaOakfs/pudX2UKGgGR0Bw8t15jYqYaAdL9WgIR0CaOkpHqeK9dX2UKGgGR0BxdWHARChOaAdL0GgIR0CaPCMir1dxdX2UKGgGR0BwFb1tfoicaAdL8WgIR0CaPEzKLbYcdX2UKGgGR0Bwo131SOzZaAdL6mgIR0CaPHiPQv6CdX2UKGgGR0By3jVqesgdaAdL3WgIR0CaPKnVXmvGdX2UKGgGR0BycGtvGZNPaAdNBAFoCEdAmjy+f7Jnx3V9lChoBkdAcV7WfseGPGgHS8NoCEdAmjzEroW56XV9lChoBkdAb83zshPj42gHS9poCEdAmj3SU1Q663V9lChoBkdAcVk07KaG6GgHS9doCEdAmj30rbxmTXV9lChoBkdAcrw4kNWluWgHS+JoCEdAmj5kVBUrCnV9lChoBkdAcalej2zv7WgHS8JoCEdAmj6k4//vOXV9lChoBkdAb+nDu0CzTmgHS9xoCEdAmkAFLeyiVXV9lChoBkdAb7nhE0BOpWgHTVADaAhHQJpAu3UhFE11fZQoaAZHQHGn63AmAsloB0vqaAhHQJpBEbvPTod1fZQoaAZHQG55BwuM+/xoB0vSaAhHQJpCdQizLOl1fZQoaAZHQGKOyxzJZGNoB03oA2gIR0CaQp43WFvidX2UKGgGR0Bwf9OP/7zkaAdL42gIR0CaQqg62fCidX2UKGgGR0BxXCgRK6FuaAdLzmgIR0CaQqYFaB7NdX2UKGgGR0Bxgz0ulGgBaAdL8WgIR0CaQzEnLJS0dX2UKGgGR0Bx8Ytcv/R3aAdL8GgIR0CaQ3th/iHZdX2UKGgGR0BwIXUgB91EaAdL82gIR0CaQ6ROUMXrdX2UKGgGR0BvioumJm/WaAdL0GgIR0CaQ77eEZivdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2504492bb159d2a7d2a4924f8c3eee8e6414103c9298843ee1c0d05cb12a0f90
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6325c97e4de577dca256934b581700249d37c6e37e375ddf6e79b679553b69da
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (192 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 235.4085131, "std_reward": 32.32266425770304, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-30T04:56:01.969742"}