File size: 7,421 Bytes
5f50973 c7a8887 5f50973 b4040dc 5f50973 b4040dc 5f50973 de45f44 5f50973 de45f44 5f50973 7f36984 5f50973 8f5679c 5f50973 d0dae49 5f50973 b4040dc 5f50973 d0dae49 b4040dc d0dae49 5f50973 d0dae49 5f50973 b4040dc d0dae49 de45f44 d0dae49 b4040dc d0dae49 de45f44 d0dae49 5f50973 ca134d7 b4040dc ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 358ba4a ca134d7 7c1e243 5b27f4f 7c1e243 b7bc44d 7c1e243 14af053 7c1e243 5b27f4f 7c1e243 b7bc44d 7c1e243 14af053 7c1e243 4e6c86c 7c1e243 2488223 7c1e243 14af053 7c1e243 4e6c86c 7c1e243 2488223 7c1e243 14af053 7c1e243 ca134d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
---
license: apache-2.0
pipeline_tag: text-generation
tags:
- fp8
- quantized
- llm-compressor
- compressed-tensors
- red hat
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---
# Llama-3.1-8B-Instruct-FP8-block
## Model Overview
- **Model Architecture:** LlamaForCausalLM
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:**
- **Version:** 1.0
- **Model Developers:**: Red Hat
Quantized version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).
### Model Optimizations
This model was obtained by quantizing the weights and activations of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) to FP8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
## Deployment
### Use with vLLM
1. Initialize vLLM server:
```
vllm serve RedHatAI/Llama-3.1-8B-Instruct-FP8-block --tensor_parallel_size 1
```
2. Send requests to the server:
```python
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "RedHatAI/Llama-3.1-8B-Instruct-FP8-block"
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
```
## Creation
This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below.
<details>
<summary>Creation details</summary>
```python
from transformers import AutoProcessor, LlamaForCausalLM
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
# Load model.
model = LlamaForCausalLM.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per-block quantization
# * quantize the activations to fp8 with dynamic token activations
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_BLOCK",
ignore=["lm_head"],
)
# Apply quantization.
oneshot(model=model, recipe=recipe)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
```
</details>
## Evaluation
The model was evaluated on the OpenLLMv1 leaderboard task, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), on reasoning tasks using [lighteval](https://github.com/huggingface/lighteval).
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
<details>
<summary>Evaluation details</summary>
**Openllm V1**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.1-8B-Instruct-FP8-block",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=1,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
```
**Openllm V2**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.1-8B-Instruct-FP8-block",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=1,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
```
**Coding Benchmarks**
```
evalplus.evaluate --model "RedHatAI/Llama-3.1-8B-Instruct-FP8-block" \
--dataset "humaneval" \
--backend vllm \
--tp 1 \
--greedy
evalplus.evaluate --model "RedHatAI/Llama-3.1-8B-Instruct-FP8-block" \
--dataset "mbpp" \
--backend vllm \
--tp 1 \
--greedy
```
</details>
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>meta-llama/Llama-3.1-8B-Instruct</th>
<th>RedHatAI/Llama-3.1-8B-Instruct-FP8-block</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<!-- OpenLLM Leaderboard V1 -->
<tr>
<td rowspan="7"><b>OpenLLM V1</b></td>
<td>ARC-Challenge (Acc-Norm, 25-shot)</td>
<td>60.92</td>
<td>60.92</td>
<td>100.00</td>
</tr>
<tr>
<td>GSM8K (Strict-Match, 5-shot)</td>
<td>71.11</td>
<td>70.66</td>
<td>99.36</td>
</tr>
<tr>
<td>HellaSwag (Acc-Norm, 10-shot)</td>
<td>80.75</td>
<td>80.48</td>
<td>99.67</td>
</tr>
<tr>
<td>MMLU (Acc, 5-shot)</td>
<td>68.20</td>
<td>67.96</td>
<td>99.64</td>
</tr>
<tr>
<td>TruthfulQA (MC2, 0-shot)</td>
<td>54.54</td>
<td>54.18</td>
<td>99.34</td>
</tr>
<tr>
<td>Winogrande (Acc, 5-shot)</td>
<td>78.45</td>
<td>78.14</td>
<td>99.60</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>69.00</b></td>
<td><b>68.72</b></td>
<td><b>99.59</b></td>
</tr>
<!-- OpenLLM Leaderboard V2 -->
<tr>
<td rowspan="7"><b>OpenLLM V2</b></td>
<td>IFEval (Inst Level Strict Acc, 0-shot)</td>
<td>81.89</td>
<td>81.41</td>
<td>99.41</td>
</tr>
<tr>
<td>BBH (Acc-Norm, 3-shot)</td>
<td>50.70</td>
<td>50.96</td>
<td>100.51</td>
</tr>
<tr>
<td>Math-Hard (Exact-Match, 4-shot)</td>
<td>20.24</td>
<td>20.77</td>
<td>102.61</td>
</tr>
<tr>
<td>GPQA (Acc-Norm, 0-shot)</td>
<td>29.53</td>
<td>29.95</td>
<td>101.42</td>
</tr>
<tr>
<td>MUSR (Acc-Norm, 0-shot)</td>
<td>38.89</td>
<td>38.62</td>
<td>99.32</td>
</tr>
<tr>
<td>MMLU-Pro (Acc, 5-shot)</td>
<td>37.71</td>
<td>37.48</td>
<td>99.38</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>43.16</b></td>
<td><b>43.20</b></td>
<td><b>100.09</b></td>
</tr>
<tr>
<td rowspan="4" ><strong>Coding</strong>
</td>
<td>HumanEval pass@1
</td>
<td>68.90
</td>
<td>68.90
</td>
<td>100.00
</td>
</tr>
<tr>
<td>HumanEval+ pass@1
</td>
<td>62.20
</td>
<td>61.00
</td>
<td>98.07
</td>
</tr>
<tr>
<td>MBPP pass@1
</td>
<td>67.70
</td>
<td>71.40
</td>
<td>105.47
</td>
</tr>
<tr>
<td>MBPP+ pass@1
</td>
<td>55.60
</td>
<td>57.90
</td>
<td>104.14
</td>
</tr>
</tbody>
</table>
|