Upload folder using huggingface_hub
Browse files- config.json +56 -0
- eagle3.py +570 -0
- generation_config.json +4 -0
- model.safetensors +3 -0
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,56 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "Eagle3Speculator"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "auto_map": {
         | 
| 6 | 
            +
                "": "eagle3.Eagle3SpeculatorConfig"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              "draft_vocab_size": 32000,
         | 
| 9 | 
            +
              "has_no_defaults_at_init": false,
         | 
| 10 | 
            +
              "norm_before_residual": true,
         | 
| 11 | 
            +
              "speculators_config": {
         | 
| 12 | 
            +
                "algorithm": "eagle3",
         | 
| 13 | 
            +
                "default_proposal_method": "greedy",
         | 
| 14 | 
            +
                "proposal_methods": [
         | 
| 15 | 
            +
                  {
         | 
| 16 | 
            +
                    "accept_tolerance": 0.0,
         | 
| 17 | 
            +
                    "proposal_type": "greedy",
         | 
| 18 | 
            +
                    "speculative_tokens": 5,
         | 
| 19 | 
            +
                    "verifier_accept_k": 1
         | 
| 20 | 
            +
                  }
         | 
| 21 | 
            +
                ],
         | 
| 22 | 
            +
                "verifier": {
         | 
| 23 | 
            +
                  "architectures": [
         | 
| 24 | 
            +
                    "LlamaForCausalLM"
         | 
| 25 | 
            +
                  ],
         | 
| 26 | 
            +
                  "name_or_path": "/proving-grounds/machine/eldarkurtic/hf_downloads/meta-llama/Llama-3.1-8B-Instruct"
         | 
| 27 | 
            +
                }
         | 
| 28 | 
            +
              },
         | 
| 29 | 
            +
              "speculators_model_type": "eagle3",
         | 
| 30 | 
            +
              "speculators_version": "0.2.0.dev11",
         | 
| 31 | 
            +
              "target_hidden_size": null,
         | 
| 32 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 33 | 
            +
              "transformer_layer_config": {
         | 
| 34 | 
            +
                "attention_bias": false,
         | 
| 35 | 
            +
                "attention_dropout": 0.0,
         | 
| 36 | 
            +
                "head_dim": 128,
         | 
| 37 | 
            +
                "hidden_act": "silu",
         | 
| 38 | 
            +
                "hidden_size": 4096,
         | 
| 39 | 
            +
                "initializer_range": 0.02,
         | 
| 40 | 
            +
                "intermediate_size": 14336,
         | 
| 41 | 
            +
                "max_position_embeddings": 131072,
         | 
| 42 | 
            +
                "mlp_bias": false,
         | 
| 43 | 
            +
                "model_type": "llama",
         | 
| 44 | 
            +
                "num_attention_heads": 32,
         | 
| 45 | 
            +
                "num_hidden_layers": 1,
         | 
| 46 | 
            +
                "num_key_value_heads": 8,
         | 
| 47 | 
            +
                "pretraining_tp": 1,
         | 
| 48 | 
            +
                "rms_norm_eps": 1e-05,
         | 
| 49 | 
            +
                "rope_scaling": null,
         | 
| 50 | 
            +
                "rope_theta": 500000.0,
         | 
| 51 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 52 | 
            +
                "use_cache": true,
         | 
| 53 | 
            +
                "vocab_size": 128256
         | 
| 54 | 
            +
              },
         | 
| 55 | 
            +
              "transformers_version": "4.53.2"
         | 
| 56 | 
            +
            }
         | 
    	
        eagle3.py
    ADDED
    
    | @@ -0,0 +1,570 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Speculators implementation of EAGLE-3:
         | 
| 3 | 
            +
                - https://arxiv.org/abs/2503.01840
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            Classes:
         | 
| 6 | 
            +
                Eagle3SpeculatorConfig: Configuration class for EAGLE-3 speculator model
         | 
| 7 | 
            +
                EagleSpeculator3: Main model implementation for EAGLE-3 speculators
         | 
| 8 | 
            +
                Eagle3Attention: Custom attention layer for EAGLE-3, processes
         | 
| 9 | 
            +
                    concatenated embeddings and hidden states
         | 
| 10 | 
            +
                Eagle3DecoderLayer: Custom decoder layer for EAGLE-3, processes
         | 
| 11 | 
            +
                    concatenated embeddings and hidden states with Eagle3Attention
         | 
| 12 | 
            +
                    and support for moving hidden layernorm before residual
         | 
| 13 | 
            +
            """
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import os
         | 
| 16 | 
            +
            from typing import Any, ClassVar, Literal, Optional, Union
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import torch
         | 
| 19 | 
            +
            from pydantic import Field, field_serializer, field_validator
         | 
| 20 | 
            +
            from torch import nn
         | 
| 21 | 
            +
            from transformers import PretrainedConfig, PreTrainedModel
         | 
| 22 | 
            +
            from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
         | 
| 23 | 
            +
            from transformers.modeling_outputs import CausalLMOutputWithPast
         | 
| 24 | 
            +
            from transformers.models.llama.configuration_llama import LlamaConfig
         | 
| 25 | 
            +
            from transformers.models.llama.modeling_llama import (
         | 
| 26 | 
            +
                LlamaMLP,
         | 
| 27 | 
            +
                LlamaRMSNorm,
         | 
| 28 | 
            +
                apply_rotary_pos_emb,
         | 
| 29 | 
            +
                repeat_kv,
         | 
| 30 | 
            +
            )
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            from speculators import SpeculatorModel, SpeculatorModelConfig
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            __all__ = [
         | 
| 35 | 
            +
                "Eagle3Attention",
         | 
| 36 | 
            +
                "Eagle3DecoderLayer",
         | 
| 37 | 
            +
                "Eagle3Speculator",
         | 
| 38 | 
            +
                "Eagle3SpeculatorConfig",
         | 
| 39 | 
            +
            ]
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            @SpeculatorModelConfig.register("eagle3")
         | 
| 43 | 
            +
            class Eagle3SpeculatorConfig(SpeculatorModelConfig):
         | 
| 44 | 
            +
                """
         | 
| 45 | 
            +
                Configuration for EAGLE-3 speculator with vocabulary mapping.
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                EAGLE-3 features vocabulary mapping between draft (32K) and target (128K)
         | 
| 48 | 
            +
                vocabularies, enabling cross-tokenizer speculation.
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                :param transformer_layer_config: Configuration for the transformer decoder layer
         | 
| 51 | 
            +
                :param draft_vocab_size: Size of draft model vocabulary for speculation
         | 
| 52 | 
            +
                :param norm_before_residual: Apply hidden_norm before storing residual
         | 
| 53 | 
            +
                """
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                speculators_model_type: Literal["eagle3"] = "eagle3"
         | 
| 56 | 
            +
                architectures: list[str] = Field(
         | 
| 57 | 
            +
                    default_factory=lambda: ["Eagle3Speculator"],
         | 
| 58 | 
            +
                    description="Model architectures that can load these weights",
         | 
| 59 | 
            +
                )
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                transformer_layer_config: PretrainedConfig = Field(
         | 
| 62 | 
            +
                    default_factory=LlamaConfig,
         | 
| 63 | 
            +
                    description="Configuration for the transformer decoder layer",
         | 
| 64 | 
            +
                )
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                draft_vocab_size: int = Field(
         | 
| 67 | 
            +
                    default=32000,
         | 
| 68 | 
            +
                    description="Size of draft model vocabulary for speculation",
         | 
| 69 | 
            +
                )
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                norm_before_residual: bool = Field(
         | 
| 72 | 
            +
                    default=False,
         | 
| 73 | 
            +
                    description="Apply hidden_norm before storing residual",
         | 
| 74 | 
            +
                )
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                target_hidden_size: Optional[int] = Field(
         | 
| 77 | 
            +
                    default=None,
         | 
| 78 | 
            +
                    description="Hidden size of the target model (if different from draft model)",
         | 
| 79 | 
            +
                )
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                @property
         | 
| 82 | 
            +
                def target_vocab_size(self) -> int:
         | 
| 83 | 
            +
                    """Get target vocabulary size from transformer config."""
         | 
| 84 | 
            +
                    return self.transformer_layer_config.vocab_size
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                @field_serializer("transformer_layer_config")
         | 
| 87 | 
            +
                def serialize_transformer_config(self, value: PretrainedConfig) -> dict:
         | 
| 88 | 
            +
                    """Serialize transformer config to dict."""
         | 
| 89 | 
            +
                    return value.to_diff_dict()
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                @field_validator("transformer_layer_config", mode="before")
         | 
| 92 | 
            +
                @classmethod
         | 
| 93 | 
            +
                def validate_transformer_config(cls, value: Any) -> PretrainedConfig:
         | 
| 94 | 
            +
                    """Validate and convert transformer config."""
         | 
| 95 | 
            +
                    if isinstance(value, dict):
         | 
| 96 | 
            +
                        config_class: type[PretrainedConfig] = LlamaConfig
         | 
| 97 | 
            +
                        if "model_type" in value:
         | 
| 98 | 
            +
                            from transformers import AutoConfig
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                            config_class = AutoConfig.for_model(
         | 
| 101 | 
            +
                                model_type=value["model_type"]
         | 
| 102 | 
            +
                            ).__class__
         | 
| 103 | 
            +
                        return config_class(**value)
         | 
| 104 | 
            +
                    return value
         | 
| 105 | 
            +
             | 
| 106 | 
            +
             | 
| 107 | 
            +
            class Eagle3Attention(nn.Module):
         | 
| 108 | 
            +
                """
         | 
| 109 | 
            +
                Eagle-3 attention module that processes concatenated embeddings and hidden states.
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                Modified from standard Llama attention to accept 2x hidden_size input
         | 
| 112 | 
            +
                for Q/K/V projections while maintaining standard output size.
         | 
| 113 | 
            +
                """
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                def __init__(self, config: PretrainedConfig, layer_idx: int):
         | 
| 116 | 
            +
                    super().__init__()
         | 
| 117 | 
            +
                    self.config = config
         | 
| 118 | 
            +
                    self.layer_idx = layer_idx
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 121 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 122 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 123 | 
            +
                    self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
         | 
| 124 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    input_size = 2 * self.hidden_size
         | 
| 127 | 
            +
                    self.q_proj = nn.Linear(
         | 
| 128 | 
            +
                        input_size, self.num_heads * self.head_dim, bias=config.attention_bias
         | 
| 129 | 
            +
                    )
         | 
| 130 | 
            +
                    self.k_proj = nn.Linear(
         | 
| 131 | 
            +
                        input_size,
         | 
| 132 | 
            +
                        self.num_key_value_heads * self.head_dim,
         | 
| 133 | 
            +
                        bias=config.attention_bias,
         | 
| 134 | 
            +
                    )
         | 
| 135 | 
            +
                    self.v_proj = nn.Linear(
         | 
| 136 | 
            +
                        input_size,
         | 
| 137 | 
            +
                        self.num_key_value_heads * self.head_dim,
         | 
| 138 | 
            +
                        bias=config.attention_bias,
         | 
| 139 | 
            +
                    )
         | 
| 140 | 
            +
                    self.o_proj = nn.Linear(
         | 
| 141 | 
            +
                        self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias
         | 
| 142 | 
            +
                    )
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                def forward(
         | 
| 145 | 
            +
                    self,
         | 
| 146 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 147 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 148 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 149 | 
            +
                    past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 150 | 
            +
                    output_attentions: bool = False,
         | 
| 151 | 
            +
                    use_cache: bool = False,
         | 
| 152 | 
            +
                    position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 153 | 
            +
                    **kwargs,  # noqa: ARG002
         | 
| 154 | 
            +
                ) -> tuple:
         | 
| 155 | 
            +
                    """
         | 
| 156 | 
            +
                    Forward pass for Eagle-3 attention.
         | 
| 157 | 
            +
                    Taken from Llama Attention but modified to accept 2x hidden_size input.
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    :param hidden_states: Input tensor of shape [batch, seq_len, 2*hidden_size]
         | 
| 160 | 
            +
                    :param attention_mask: Optional attention mask
         | 
| 161 | 
            +
                    :param position_ids: Optional position IDs for rotary embeddings
         | 
| 162 | 
            +
                    :param past_key_value: Optional cached key-value pairs
         | 
| 163 | 
            +
                    :param output_attentions: Whether to return attention weights
         | 
| 164 | 
            +
                    :param use_cache: Whether to cache key-value pairs
         | 
| 165 | 
            +
                    :param position_embeddings: Optional precomputed rotary embeddings
         | 
| 166 | 
            +
                    :return: Tuple of (hidden_states, [attention_weights], [past_key_value])
         | 
| 167 | 
            +
                    """
         | 
| 168 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 171 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 172 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    query_states = query_states.view(
         | 
| 175 | 
            +
                        bsz, q_len, self.num_heads, self.head_dim
         | 
| 176 | 
            +
                    ).transpose(1, 2)
         | 
| 177 | 
            +
                    key_states = key_states.view(
         | 
| 178 | 
            +
                        bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 179 | 
            +
                    ).transpose(1, 2)
         | 
| 180 | 
            +
                    value_states = value_states.view(
         | 
| 181 | 
            +
                        bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 182 | 
            +
                    ).transpose(1, 2)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    if position_embeddings is not None:
         | 
| 185 | 
            +
                        cos, sin = position_embeddings
         | 
| 186 | 
            +
                        query_states, key_states = apply_rotary_pos_emb(
         | 
| 187 | 
            +
                            query_states, key_states, cos, sin, position_ids
         | 
| 188 | 
            +
                        )
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    past_key_value_out = None
         | 
| 191 | 
            +
                    if past_key_value is not None:
         | 
| 192 | 
            +
                        past_key = past_key_value[0]
         | 
| 193 | 
            +
                        past_value = past_key_value[1]
         | 
| 194 | 
            +
                        key_states = torch.cat([past_key, key_states], dim=2)
         | 
| 195 | 
            +
                        value_states = torch.cat([past_value, value_states], dim=2)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    if use_cache:
         | 
| 198 | 
            +
                        past_key_value_out = (key_states, value_states)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 201 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / (
         | 
| 204 | 
            +
                        self.head_dim**0.5
         | 
| 205 | 
            +
                    )
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    if attention_mask is not None:
         | 
| 208 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    attn_weights = nn.functional.softmax(
         | 
| 211 | 
            +
                        attn_weights, dim=-1, dtype=torch.float32
         | 
| 212 | 
            +
                    ).to(query_states.dtype)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 215 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 216 | 
            +
                    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    if not output_attentions:
         | 
| 221 | 
            +
                        attn_weights = None
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    return attn_output, attn_weights, past_key_value_out
         | 
| 224 | 
            +
             | 
| 225 | 
            +
             | 
| 226 | 
            +
            class Eagle3DecoderLayer(nn.Module):
         | 
| 227 | 
            +
                """
         | 
| 228 | 
            +
                Eagle-3 decoder layer that processes concatenated embeddings and hidden states.
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                Accepts 2x hidden_size input from concatenated embeddings and fused hidden states.
         | 
| 231 | 
            +
                Uses Eagle3Attention for the self-attention computation.
         | 
| 232 | 
            +
                """
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def __init__(
         | 
| 235 | 
            +
                    self,
         | 
| 236 | 
            +
                    config: PretrainedConfig,
         | 
| 237 | 
            +
                    layer_idx: int,
         | 
| 238 | 
            +
                    norm_before_residual: bool = False,
         | 
| 239 | 
            +
                ):
         | 
| 240 | 
            +
                    super().__init__()
         | 
| 241 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 242 | 
            +
                    self.norm_before_residual = norm_before_residual
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 245 | 
            +
                    self.hidden_norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 246 | 
            +
                    self.post_attention_layernorm = LlamaRMSNorm(
         | 
| 247 | 
            +
                        config.hidden_size, eps=config.rms_norm_eps
         | 
| 248 | 
            +
                    )
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    self.self_attn = Eagle3Attention(config, layer_idx)
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    self.mlp = LlamaMLP(config)
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                def forward(
         | 
| 255 | 
            +
                    self,
         | 
| 256 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 257 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 258 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 259 | 
            +
                    past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 260 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 261 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 262 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,  # noqa: ARG002
         | 
| 263 | 
            +
                    position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 264 | 
            +
                    **kwargs,  # noqa: ARG002
         | 
| 265 | 
            +
                ) -> tuple:
         | 
| 266 | 
            +
                    """
         | 
| 267 | 
            +
                    Process concatenated embeddings and hidden states through modified decoder
         | 
| 268 | 
            +
                    layer.
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    :param hidden_states: Input tensor of shape [batch, seq_len, 2*hidden_size]
         | 
| 271 | 
            +
                    :return: Tuple of layer outputs
         | 
| 272 | 
            +
                    """
         | 
| 273 | 
            +
                    embeds = hidden_states[:, :, : self.hidden_size]
         | 
| 274 | 
            +
                    hidden = hidden_states[:, :, self.hidden_size : 2 * self.hidden_size]
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    if self.norm_before_residual:
         | 
| 277 | 
            +
                        hidden = self.hidden_norm(hidden)
         | 
| 278 | 
            +
                        residual = hidden
         | 
| 279 | 
            +
                    else:
         | 
| 280 | 
            +
                        residual = hidden
         | 
| 281 | 
            +
                        hidden = self.hidden_norm(hidden)
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    embeds = self.input_layernorm(embeds)
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    attn_input = torch.cat([embeds, hidden], dim=-1)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    attn_output, attn_weights, past_key_value_out = self.self_attn(
         | 
| 288 | 
            +
                        hidden_states=attn_input,
         | 
| 289 | 
            +
                        attention_mask=attention_mask,
         | 
| 290 | 
            +
                        position_ids=position_ids,
         | 
| 291 | 
            +
                        past_key_value=past_key_value,
         | 
| 292 | 
            +
                        output_attentions=output_attentions,
         | 
| 293 | 
            +
                        use_cache=use_cache,
         | 
| 294 | 
            +
                        position_embeddings=position_embeddings,
         | 
| 295 | 
            +
                    )
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                    hidden_states = residual + attn_output
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    residual = hidden_states
         | 
| 300 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 301 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 302 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    outputs = (hidden_states,)
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    if output_attentions:
         | 
| 307 | 
            +
                        outputs += (attn_weights,)  # type: ignore[assignment]
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    if use_cache:
         | 
| 310 | 
            +
                        outputs += (past_key_value_out,)  # type: ignore[assignment]
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                    return outputs
         | 
| 313 | 
            +
             | 
| 314 | 
            +
             | 
| 315 | 
            +
            @SpeculatorModel.register("eagle3")
         | 
| 316 | 
            +
            class Eagle3Speculator(SpeculatorModel):
         | 
| 317 | 
            +
                """
         | 
| 318 | 
            +
                EAGLE-3 speculator with vocabulary mapping and multi-layer fusion.
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                EAGLE-3 processes concatenated hidden states from multiple verifier layers
         | 
| 321 | 
            +
                through a fusion layer, then combines with embeddings for a custom decoder
         | 
| 322 | 
            +
                layer that accepts 2x hidden_size input.
         | 
| 323 | 
            +
                """
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                config_class: ClassVar[type[Eagle3SpeculatorConfig]] = Eagle3SpeculatorConfig  # type: ignore[misc]
         | 
| 326 | 
            +
                _keys_to_ignore_on_load_missing: ClassVar[list[str]] = [  # type: ignore[misc]
         | 
| 327 | 
            +
                    "verifier*",
         | 
| 328 | 
            +
                ]
         | 
| 329 | 
            +
                _keys_to_ignore_on_save: ClassVar[list[str]] = []  # type: ignore[misc,assignment]
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                def __init__(
         | 
| 332 | 
            +
                    self,
         | 
| 333 | 
            +
                    config: Eagle3SpeculatorConfig,
         | 
| 334 | 
            +
                    verifier: Optional[Union[str, os.PathLike, PreTrainedModel]] = None,
         | 
| 335 | 
            +
                    verifier_attachment_mode: Optional[
         | 
| 336 | 
            +
                        Literal["detached", "full", "train_only"]
         | 
| 337 | 
            +
                    ] = None,
         | 
| 338 | 
            +
                ):
         | 
| 339 | 
            +
                    """
         | 
| 340 | 
            +
                    Initialize Eagle3 speculator.
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    :param config: Eagle3SpeculatorConfig instance
         | 
| 343 | 
            +
                    :param verifier: Optional verifier model
         | 
| 344 | 
            +
                    :param verifier_attachment_mode: How to attach the verifier
         | 
| 345 | 
            +
                    """
         | 
| 346 | 
            +
                    if not isinstance(config, Eagle3SpeculatorConfig):
         | 
| 347 | 
            +
                        raise ValueError(
         | 
| 348 | 
            +
                            f"config must be Eagle3SpeculatorConfig, got {type(config)}"
         | 
| 349 | 
            +
                        )
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                    self.config: Eagle3SpeculatorConfig = config
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    self.hidden_size = config.transformer_layer_config.hidden_size
         | 
| 354 | 
            +
                    self.draft_vocab_size = config.draft_vocab_size
         | 
| 355 | 
            +
                    self.target_vocab_size = config.target_vocab_size
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                    # Use target_hidden_size if specified, otherwise use draft model's hidden_size
         | 
| 358 | 
            +
                    self.target_hidden_size = (
         | 
| 359 | 
            +
                        config.target_hidden_size
         | 
| 360 | 
            +
                        if config.target_hidden_size is not None
         | 
| 361 | 
            +
                        else self.hidden_size
         | 
| 362 | 
            +
                    )
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    super().__init__(
         | 
| 365 | 
            +
                        config=config,
         | 
| 366 | 
            +
                        verifier=verifier,
         | 
| 367 | 
            +
                        verifier_attachment_mode=verifier_attachment_mode,
         | 
| 368 | 
            +
                    )
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                    self.embed_tokens = nn.Embedding(
         | 
| 371 | 
            +
                        self.target_vocab_size,
         | 
| 372 | 
            +
                        self.hidden_size,
         | 
| 373 | 
            +
                        padding_idx=config.transformer_layer_config.pad_token_id
         | 
| 374 | 
            +
                        if hasattr(config.transformer_layer_config, "pad_token_id")
         | 
| 375 | 
            +
                        else None,
         | 
| 376 | 
            +
                    )
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    self.fc = nn.Linear(
         | 
| 379 | 
            +
                        3 * self.target_hidden_size,  # Use target model's hidden size
         | 
| 380 | 
            +
                        self.hidden_size,
         | 
| 381 | 
            +
                        bias=False,
         | 
| 382 | 
            +
                    )
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 385 | 
            +
                        [
         | 
| 386 | 
            +
                            Eagle3DecoderLayer(
         | 
| 387 | 
            +
                                config.transformer_layer_config,
         | 
| 388 | 
            +
                                layer_idx=0,
         | 
| 389 | 
            +
                                norm_before_residual=config.norm_before_residual,
         | 
| 390 | 
            +
                            )
         | 
| 391 | 
            +
                        ]
         | 
| 392 | 
            +
                    )
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    self.norm = LlamaRMSNorm(
         | 
| 395 | 
            +
                        self.hidden_size,
         | 
| 396 | 
            +
                        eps=config.transformer_layer_config.rms_norm_eps,
         | 
| 397 | 
            +
                    )
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    self.lm_head = nn.Linear(
         | 
| 400 | 
            +
                        self.hidden_size,
         | 
| 401 | 
            +
                        self.draft_vocab_size,
         | 
| 402 | 
            +
                        bias=False,
         | 
| 403 | 
            +
                    )
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    self.register_buffer(  # type: ignore[attr-defined]
         | 
| 406 | 
            +
                        "d2t",
         | 
| 407 | 
            +
                        torch.zeros(self.draft_vocab_size, dtype=torch.long),
         | 
| 408 | 
            +
                    )
         | 
| 409 | 
            +
                    self.register_buffer(  # type: ignore[attr-defined]
         | 
| 410 | 
            +
                        "t2d",
         | 
| 411 | 
            +
                        torch.zeros(self.target_vocab_size, dtype=torch.bool),
         | 
| 412 | 
            +
                    )
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    # Type hints for buffers
         | 
| 415 | 
            +
                    self.d2t: torch.Tensor
         | 
| 416 | 
            +
                    self.t2d: torch.Tensor
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    self.post_init()  # type: ignore[attr-defined]
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                def forward(
         | 
| 421 | 
            +
                    self,
         | 
| 422 | 
            +
                    input_ids: torch.LongTensor,
         | 
| 423 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 424 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 425 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 426 | 
            +
                    past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
         | 
| 427 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 428 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 429 | 
            +
                    output_hidden_states: Optional[bool] = None,  # noqa: ARG002
         | 
| 430 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 431 | 
            +
                ) -> Union[torch.FloatTensor, CausalLMOutputWithPast]:
         | 
| 432 | 
            +
                    """
         | 
| 433 | 
            +
                    Forward pass for EAGLE-3 speculation.
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    :param input_ids: Input token IDs from draft vocabulary
         | 
| 436 | 
            +
                    :param hidden_states: Concatenated hidden states from 3 verifier layers
         | 
| 437 | 
            +
                        [B, L, 3*target_H] where target_H is the target model's hidden size
         | 
| 438 | 
            +
                    :param attention_mask: Optional attention mask
         | 
| 439 | 
            +
                    :param position_ids: Optional position IDs
         | 
| 440 | 
            +
                    :param past_key_values: Optional cached key-values
         | 
| 441 | 
            +
                    :param use_cache: Whether to cache key-values
         | 
| 442 | 
            +
                    :param output_attentions: Return attention weights
         | 
| 443 | 
            +
                    :param output_hidden_states: Return hidden states
         | 
| 444 | 
            +
                    :param return_dict: Return dict output
         | 
| 445 | 
            +
                    :return: Model outputs with draft vocabulary logits
         | 
| 446 | 
            +
                    """
         | 
| 447 | 
            +
                    return_dict = (
         | 
| 448 | 
            +
                        return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 449 | 
            +
                    )
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    inputs_embeds = self.embed_tokens(input_ids)
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                    fused_hidden = self.fc(hidden_states)
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                    layer_input = torch.cat([inputs_embeds, fused_hidden], dim=-1)
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                    batch_size, seq_length = layer_input.shape[:2]
         | 
| 458 | 
            +
                    if attention_mask is not None and attention_mask.dim() == 2:  # noqa: PLR2004
         | 
| 459 | 
            +
                        past_key_values_length = (
         | 
| 460 | 
            +
                            past_key_values[0][0].shape[2] if past_key_values else 0
         | 
| 461 | 
            +
                        )
         | 
| 462 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask(
         | 
| 463 | 
            +
                            attention_mask,
         | 
| 464 | 
            +
                            (batch_size, seq_length),
         | 
| 465 | 
            +
                            hidden_states,
         | 
| 466 | 
            +
                            past_key_values_length,
         | 
| 467 | 
            +
                        )
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                    if position_ids is None:
         | 
| 470 | 
            +
                        device = hidden_states.device
         | 
| 471 | 
            +
                        position_ids = (
         | 
| 472 | 
            +
                            torch.arange(  # type: ignore[assignment]
         | 
| 473 | 
            +
                                seq_length, dtype=torch.long, device=device
         | 
| 474 | 
            +
                            )
         | 
| 475 | 
            +
                            .unsqueeze(0)
         | 
| 476 | 
            +
                            .expand(batch_size, -1)
         | 
| 477 | 
            +
                        )
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                    layer_outputs = self.layers[0](
         | 
| 480 | 
            +
                        layer_input,
         | 
| 481 | 
            +
                        attention_mask=attention_mask,
         | 
| 482 | 
            +
                        position_ids=position_ids,
         | 
| 483 | 
            +
                        past_key_value=past_key_values[0] if past_key_values else None,
         | 
| 484 | 
            +
                        output_attentions=output_attentions,
         | 
| 485 | 
            +
                        use_cache=use_cache,
         | 
| 486 | 
            +
                    )
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    hidden_states = layer_outputs[0]
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                    logits = self.compute_logits(hidden_states, map_to_target_vocab=True)
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                    if not return_dict:
         | 
| 495 | 
            +
                        return logits
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 498 | 
            +
                        logits=logits,
         | 
| 499 | 
            +
                        past_key_values=[layer_outputs[1]] if use_cache else None,  # type: ignore[arg-type]
         | 
| 500 | 
            +
                        hidden_states=None,
         | 
| 501 | 
            +
                        attentions=None,
         | 
| 502 | 
            +
                    )
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                def compute_logits(
         | 
| 505 | 
            +
                    self,
         | 
| 506 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 507 | 
            +
                    map_to_target_vocab: bool = True,
         | 
| 508 | 
            +
                ) -> torch.FloatTensor:
         | 
| 509 | 
            +
                    """
         | 
| 510 | 
            +
                    Compute logits with optional vocabulary mapping.
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                    :param hidden_states: Hidden states from the model
         | 
| 513 | 
            +
                    :param map_to_target_vocab: Whether to map draft logits to target vocabulary
         | 
| 514 | 
            +
                    :return: Logits tensor
         | 
| 515 | 
            +
                    """
         | 
| 516 | 
            +
                    logits = self.lm_head(hidden_states)
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                    if not map_to_target_vocab:
         | 
| 519 | 
            +
                        return logits
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                    batch_size, seq_length, _ = logits.shape
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                    draft_indices = torch.arange(self.draft_vocab_size, device=logits.device)
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                    target_indices = draft_indices + self.d2t
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    mapped_logits = logits.new_full(
         | 
| 528 | 
            +
                        (batch_size, seq_length, self.target_vocab_size), float("-inf")
         | 
| 529 | 
            +
                    )
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    mapped_logits[:, :, target_indices] = logits
         | 
| 532 | 
            +
             | 
| 533 | 
            +
                    return mapped_logits
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                def map_draft_to_target_tokens(
         | 
| 536 | 
            +
                    self, draft_tokens: torch.LongTensor
         | 
| 537 | 
            +
                ) -> torch.LongTensor:
         | 
| 538 | 
            +
                    """
         | 
| 539 | 
            +
                    Map draft token IDs to target token IDs.
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                    :param draft_tokens: Draft vocabulary token IDs
         | 
| 542 | 
            +
                    :return: Target vocabulary token IDs
         | 
| 543 | 
            +
                    """
         | 
| 544 | 
            +
                    return draft_tokens + self.d2t[draft_tokens]  # type: ignore[return-value]
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                def check_target_token_availability(
         | 
| 547 | 
            +
                    self, target_tokens: torch.LongTensor
         | 
| 548 | 
            +
                ) -> torch.BoolTensor:
         | 
| 549 | 
            +
                    """
         | 
| 550 | 
            +
                    Check if target tokens have draft equivalents.
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                    :param target_tokens: Target vocabulary token IDs
         | 
| 553 | 
            +
                    :return: Boolean mask indicating availability in draft vocabulary
         | 
| 554 | 
            +
                    """
         | 
| 555 | 
            +
                    return self.t2d[target_tokens]  # type: ignore[return-value]
         | 
| 556 | 
            +
             | 
| 557 | 
            +
                def tie_weights(self):
         | 
| 558 | 
            +
                    """
         | 
| 559 | 
            +
                    Override tie_weights to prevent vocabulary corruption in transformers 4.54.1+
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    Eagle3 intentionally uses different vocabulary sizes:
         | 
| 562 | 
            +
                    - Input embeddings (embed_tokens): 128256 (full vocabulary)
         | 
| 563 | 
            +
                    - Output embeddings (lm_head): 32000 (draft vocabulary)
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                    The default tie_weights() tries to make them identical, breaking Eagle3.
         | 
| 566 | 
            +
                    This override preserves the intentional vocabulary size difference.
         | 
| 567 | 
            +
                    """
         | 
| 568 | 
            +
                    # Don't call super().tie_weights() - this prevents vocabulary corruption
         | 
| 569 | 
            +
                    # that occurs when _tie_or_clone_weights replaces lm_head.weight with
         | 
| 570 | 
            +
                    # embed_tokens.weight
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "transformers_version": "4.53.2"
         | 
| 4 | 
            +
            }
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:502d930bffd89a9ea220790f4b62583f2001b6b0b8caf7d93cf90a2ed708b60a
         | 
| 3 | 
            +
            size 1900438376
         | 

