Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
license: llama3
|
| 6 |
+
license_link: https://llama.meta.com/llama3/license/
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# Meta-Llama-3-70B-Instruct-quantized.w8a8
|
| 10 |
+
|
| 11 |
+
## Model Overview
|
| 12 |
+
- **Model Architecture:** Meta-Llama-3
|
| 13 |
+
- **Input:** Text
|
| 14 |
+
- **Output:** Text
|
| 15 |
+
- **Model Optimizations:**
|
| 16 |
+
- **Weight quantization:** INT8
|
| 17 |
+
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct), this models is intended for assistant-like chat.
|
| 18 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 19 |
+
- **Release Date:** 7/14/2024
|
| 20 |
+
- **Version:** 1.0
|
| 21 |
+
- **License(s):** [Llama3](https://llama.meta.com/llama3/license/)
|
| 22 |
+
- **Model Developers:** Neural Magic
|
| 23 |
+
|
| 24 |
+
Quantized version of [Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).
|
| 25 |
+
It achieves an average score of 79.18 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 79.18.
|
| 26 |
+
|
| 27 |
+
### Model Optimizations
|
| 28 |
+
|
| 29 |
+
This model was obtained by quantizing the weights of [Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) to INT8 data type.
|
| 30 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
| 31 |
+
|
| 32 |
+
Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights.
|
| 33 |
+
[AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 10% damping factor and 128 sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration).
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
## Deployment
|
| 37 |
+
|
| 38 |
+
### Use with vLLM
|
| 39 |
+
|
| 40 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below (using 2 GPUs).
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
from vllm import LLM, SamplingParams
|
| 44 |
+
from transformers import AutoTokenizer
|
| 45 |
+
|
| 46 |
+
model_id = "neuralmagic/Meta-Llama-3-70B-Instruct-quantized.w8a16"
|
| 47 |
+
number_gpus = 2
|
| 48 |
+
|
| 49 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
| 50 |
+
|
| 51 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 52 |
+
|
| 53 |
+
messages = [
|
| 54 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 55 |
+
{"role": "user", "content": "Who are you?"},
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
| 59 |
+
|
| 60 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
| 61 |
+
|
| 62 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 63 |
+
|
| 64 |
+
generated_text = outputs[0].outputs[0].text
|
| 65 |
+
print(generated_text)
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
| 69 |
+
|
| 70 |
+
### Use with transformers
|
| 71 |
+
|
| 72 |
+
This model is supported by Transformers leveraging the integration with the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) data format.
|
| 73 |
+
The following example contemplates how the model can be used using the `generate()` function.
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 77 |
+
|
| 78 |
+
model_id = "neuralmagic/Meta-Llama-3-70B-Instruct-quantized.w8a16"
|
| 79 |
+
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 81 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 82 |
+
model_id,
|
| 83 |
+
torch_dtype="auto",
|
| 84 |
+
device_map="auto",
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
messages = [
|
| 88 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 89 |
+
{"role": "user", "content": "Who are you?"},
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
input_ids = tokenizer.apply_chat_template(
|
| 93 |
+
messages,
|
| 94 |
+
add_generation_prompt=True,
|
| 95 |
+
return_tensors="pt"
|
| 96 |
+
).to(model.device)
|
| 97 |
+
|
| 98 |
+
terminators = [
|
| 99 |
+
tokenizer.eos_token_id,
|
| 100 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 101 |
+
]
|
| 102 |
+
|
| 103 |
+
outputs = model.generate(
|
| 104 |
+
input_ids,
|
| 105 |
+
max_new_tokens=256,
|
| 106 |
+
eos_token_id=terminators,
|
| 107 |
+
do_sample=True,
|
| 108 |
+
temperature=0.6,
|
| 109 |
+
top_p=0.9,
|
| 110 |
+
)
|
| 111 |
+
response = outputs[0][input_ids.shape[-1]:]
|
| 112 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
## Creation
|
| 116 |
+
|
| 117 |
+
This model was created by applying the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) library as presented in the code snipet below.
|
| 118 |
+
Although AutoGPTQ was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoGPTQ.
|
| 119 |
+
|
| 120 |
+
```python
|
| 121 |
+
from transformers import AutoTokenizer
|
| 122 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
| 123 |
+
from datasets import load_dataset
|
| 124 |
+
|
| 125 |
+
model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
|
| 126 |
+
|
| 127 |
+
num_samples = 128
|
| 128 |
+
max_seq_len = 8192
|
| 129 |
+
|
| 130 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 131 |
+
|
| 132 |
+
def preprocess_fn(example):
|
| 133 |
+
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
|
| 134 |
+
|
| 135 |
+
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
|
| 136 |
+
ds = ds.shuffle().select(range(num_samples))
|
| 137 |
+
ds = ds.map(preprocess_fn)
|
| 138 |
+
|
| 139 |
+
examples = [tokenizer(example["text"], padding=False, max_length=max_seq_len, truncation=True) for example in ds]
|
| 140 |
+
|
| 141 |
+
quantize_config = BaseQuantizeConfig(
|
| 142 |
+
bits=8,
|
| 143 |
+
group_size=-1,
|
| 144 |
+
desc_act=False,
|
| 145 |
+
model_file_base_name="model",
|
| 146 |
+
damp_percent=0.1,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
model = AutoGPTQForCausalLM.from_pretrained(
|
| 150 |
+
model_id,
|
| 151 |
+
quantize_config,
|
| 152 |
+
device_map="auto",
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
model.quantize(examples)
|
| 156 |
+
model.save_pretrained("Meta-Llama-3-70B-Instruct-quantized.w8a8")
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
## Evaluation
|
| 162 |
+
|
| 163 |
+
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command (using 2 GPUs):
|
| 164 |
+
```
|
| 165 |
+
lm_eval \
|
| 166 |
+
--model vllm \
|
| 167 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3-70B-Instruct-quantized.w8a8",tensor_parallel_size=2,dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
|
| 168 |
+
--tasks openllm \
|
| 169 |
+
--batch_size auto
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
### Accuracy
|
| 173 |
+
|
| 174 |
+
#### Open LLM Leaderboard evaluation scores
|
| 175 |
+
<table>
|
| 176 |
+
<tr>
|
| 177 |
+
<td><strong>Benchmark</strong>
|
| 178 |
+
</td>
|
| 179 |
+
<td><strong>Meta-Llama-3-70B-Instruct </strong>
|
| 180 |
+
</td>
|
| 181 |
+
<td><strong>Meta-Llama-3-70B-Instruct-quantized.w8a16 (this model)</strong>
|
| 182 |
+
</td>
|
| 183 |
+
<td><strong>Recovery</strong>
|
| 184 |
+
</td>
|
| 185 |
+
</tr>
|
| 186 |
+
<tr>
|
| 187 |
+
<td>MMLU (5-shot)
|
| 188 |
+
</td>
|
| 189 |
+
<td>80.18
|
| 190 |
+
</td>
|
| 191 |
+
<td>79.41
|
| 192 |
+
</td>
|
| 193 |
+
<td>99.0%
|
| 194 |
+
</td>
|
| 195 |
+
</tr>
|
| 196 |
+
<tr>
|
| 197 |
+
<td>ARC Challenge (25-shot)
|
| 198 |
+
</td>
|
| 199 |
+
<td>72.44
|
| 200 |
+
</td>
|
| 201 |
+
<td>72.61
|
| 202 |
+
</td>
|
| 203 |
+
<td>100.2%
|
| 204 |
+
</td>
|
| 205 |
+
</tr>
|
| 206 |
+
<tr>
|
| 207 |
+
<td>GSM-8K (5-shot, strict-match)
|
| 208 |
+
</td>
|
| 209 |
+
<td>90.83
|
| 210 |
+
</td>
|
| 211 |
+
<td>92.27
|
| 212 |
+
</td>
|
| 213 |
+
<td>101.6%
|
| 214 |
+
</td>
|
| 215 |
+
</tr>
|
| 216 |
+
<tr>
|
| 217 |
+
<td>Hellaswag (10-shot)
|
| 218 |
+
</td>
|
| 219 |
+
<td>85.54
|
| 220 |
+
</td>
|
| 221 |
+
<td>85.75
|
| 222 |
+
</td>
|
| 223 |
+
<td>100.2%
|
| 224 |
+
</td>
|
| 225 |
+
</tr>
|
| 226 |
+
<tr>
|
| 227 |
+
<td>Winogrande (5-shot)
|
| 228 |
+
</td>
|
| 229 |
+
<td>83.19
|
| 230 |
+
</td>
|
| 231 |
+
<td>82.56
|
| 232 |
+
</td>
|
| 233 |
+
<td>99.2%
|
| 234 |
+
</td>
|
| 235 |
+
</tr>
|
| 236 |
+
<tr>
|
| 237 |
+
<td>TruthfulQA (0-shot)
|
| 238 |
+
</td>
|
| 239 |
+
<td>62.92
|
| 240 |
+
</td>
|
| 241 |
+
<td>62.48
|
| 242 |
+
</td>
|
| 243 |
+
<td>99.3%
|
| 244 |
+
</td>
|
| 245 |
+
</tr>
|
| 246 |
+
<tr>
|
| 247 |
+
<td><strong>Average</strong>
|
| 248 |
+
</td>
|
| 249 |
+
<td><strong>79.18</strong>
|
| 250 |
+
</td>
|
| 251 |
+
<td><strong>79.18</strong>
|
| 252 |
+
</td>
|
| 253 |
+
<td><strong>100.0%</strong>
|
| 254 |
+
</td>
|
| 255 |
+
</tr>
|
| 256 |
+
</table>
|