Update README.md
Browse files
README.md
CHANGED
|
@@ -20,12 +20,12 @@ language:
|
|
| 20 |
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
|
| 21 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 22 |
- **Release Date:** 7/24/2024
|
| 23 |
-
- **Version:** 1.
|
| 24 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
| 25 |
- **Model Developers:** Neural Magic
|
| 26 |
|
| 27 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
| 28 |
-
It achieves an average score of 86.
|
| 29 |
|
| 30 |
### Model Optimizations
|
| 31 |
|
|
@@ -164,7 +164,7 @@ oneshot(
|
|
| 164 |
|
| 165 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
| 166 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 167 |
-
This version of the lm-evaluation-harness includes versions of ARC-Challenge
|
| 168 |
|
| 169 |
### Accuracy
|
| 170 |
|
|
@@ -183,41 +183,41 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
| 183 |
<tr>
|
| 184 |
<td>MMLU (5-shot)
|
| 185 |
</td>
|
| 186 |
-
<td>
|
| 187 |
</td>
|
| 188 |
-
<td>
|
| 189 |
</td>
|
| 190 |
-
<td>99.
|
| 191 |
</td>
|
| 192 |
</tr>
|
| 193 |
<tr>
|
| 194 |
<td>ARC Challenge (0-shot)
|
| 195 |
</td>
|
| 196 |
-
<td>
|
| 197 |
</td>
|
| 198 |
-
<td>
|
| 199 |
</td>
|
| 200 |
-
<td>
|
| 201 |
</td>
|
| 202 |
</tr>
|
| 203 |
<tr>
|
| 204 |
<td>GSM-8K-cot (8-shot, strict-match)
|
| 205 |
</td>
|
| 206 |
-
<td>
|
| 207 |
</td>
|
| 208 |
-
<td>95.
|
| 209 |
</td>
|
| 210 |
-
<td>99.
|
| 211 |
</td>
|
| 212 |
</tr>
|
| 213 |
<tr>
|
| 214 |
<td>Hellaswag (10-shot)
|
| 215 |
</td>
|
| 216 |
-
<td>88.
|
| 217 |
</td>
|
| 218 |
-
<td>88.
|
| 219 |
</td>
|
| 220 |
-
<td>99.
|
| 221 |
</td>
|
| 222 |
</tr>
|
| 223 |
<tr>
|
|
@@ -225,29 +225,29 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
| 225 |
</td>
|
| 226 |
<td>87.21
|
| 227 |
</td>
|
| 228 |
-
<td>
|
| 229 |
</td>
|
| 230 |
-
<td>
|
| 231 |
</td>
|
| 232 |
</tr>
|
| 233 |
<tr>
|
| 234 |
<td>TruthfulQA (0-shot, mc2)
|
| 235 |
</td>
|
| 236 |
-
<td>
|
| 237 |
</td>
|
| 238 |
-
<td>64.
|
| 239 |
</td>
|
| 240 |
-
<td>
|
| 241 |
</td>
|
| 242 |
</tr>
|
| 243 |
<tr>
|
| 244 |
<td><strong>Average</strong>
|
| 245 |
</td>
|
| 246 |
-
<td><strong>86.
|
| 247 |
</td>
|
| 248 |
-
<td><strong>86.
|
| 249 |
</td>
|
| 250 |
-
<td><strong>99.
|
| 251 |
</td>
|
| 252 |
</tr>
|
| 253 |
</table>
|
|
@@ -261,8 +261,10 @@ The results were obtained using the following commands:
|
|
| 261 |
```
|
| 262 |
lm_eval \
|
| 263 |
--model vllm \
|
| 264 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \
|
| 265 |
-
--tasks
|
|
|
|
|
|
|
| 266 |
--num_fewshot 5 \
|
| 267 |
--batch_size auto
|
| 268 |
```
|
|
|
|
| 20 |
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
|
| 21 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 22 |
- **Release Date:** 7/24/2024
|
| 23 |
+
- **Version:** 1.1
|
| 24 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
| 25 |
- **Model Developers:** Neural Magic
|
| 26 |
|
| 27 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
| 28 |
+
It achieves an average score of 86.39 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 86.57.
|
| 29 |
|
| 30 |
### Model Optimizations
|
| 31 |
|
|
|
|
| 164 |
|
| 165 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
| 166 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 167 |
+
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, and MMLU that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
| 168 |
|
| 169 |
### Accuracy
|
| 170 |
|
|
|
|
| 183 |
<tr>
|
| 184 |
<td>MMLU (5-shot)
|
| 185 |
</td>
|
| 186 |
+
<td>87.41
|
| 187 |
</td>
|
| 188 |
+
<td>87.05
|
| 189 |
</td>
|
| 190 |
+
<td>99.59%
|
| 191 |
</td>
|
| 192 |
</tr>
|
| 193 |
<tr>
|
| 194 |
<td>ARC Challenge (0-shot)
|
| 195 |
</td>
|
| 196 |
+
<td>94.97
|
| 197 |
</td>
|
| 198 |
+
<td>94.97
|
| 199 |
</td>
|
| 200 |
+
<td>100.0%
|
| 201 |
</td>
|
| 202 |
</tr>
|
| 203 |
<tr>
|
| 204 |
<td>GSM-8K-cot (8-shot, strict-match)
|
| 205 |
</td>
|
| 206 |
+
<td>95.98
|
| 207 |
</td>
|
| 208 |
+
<td>95.83
|
| 209 |
</td>
|
| 210 |
+
<td>99.84%
|
| 211 |
</td>
|
| 212 |
</tr>
|
| 213 |
<tr>
|
| 214 |
<td>Hellaswag (10-shot)
|
| 215 |
</td>
|
| 216 |
+
<td>88.54
|
| 217 |
</td>
|
| 218 |
+
<td>88.11
|
| 219 |
</td>
|
| 220 |
+
<td>99.51%
|
| 221 |
</td>
|
| 222 |
</tr>
|
| 223 |
<tr>
|
|
|
|
| 225 |
</td>
|
| 226 |
<td>87.21
|
| 227 |
</td>
|
| 228 |
+
<td>87.77
|
| 229 |
</td>
|
| 230 |
+
<td>100.6%
|
| 231 |
</td>
|
| 232 |
</tr>
|
| 233 |
<tr>
|
| 234 |
<td>TruthfulQA (0-shot, mc2)
|
| 235 |
</td>
|
| 236 |
+
<td>65.31
|
| 237 |
</td>
|
| 238 |
+
<td>64.58
|
| 239 |
</td>
|
| 240 |
+
<td>98.88%
|
| 241 |
</td>
|
| 242 |
</tr>
|
| 243 |
<tr>
|
| 244 |
<td><strong>Average</strong>
|
| 245 |
</td>
|
| 246 |
+
<td><strong>86.57</strong>
|
| 247 |
</td>
|
| 248 |
+
<td><strong>86.39</strong>
|
| 249 |
</td>
|
| 250 |
+
<td><strong>99.75%</strong>
|
| 251 |
</td>
|
| 252 |
</tr>
|
| 253 |
</table>
|
|
|
|
| 261 |
```
|
| 262 |
lm_eval \
|
| 263 |
--model vllm \
|
| 264 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,max_gen_toks=10,tensor_parallel_size=8 \
|
| 265 |
+
--tasks mmlu_llama_3.1_instruct \
|
| 266 |
+
--apply_chat_template \
|
| 267 |
+
--fewshot_as_multiturn \
|
| 268 |
--num_fewshot 5 \
|
| 269 |
--batch_size auto
|
| 270 |
```
|