Update README.md
Browse files
README.md
CHANGED
|
@@ -33,7 +33,7 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) with the updated 8 kv-heads.
|
| 36 |
-
It achieves an average score of 86.
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
@@ -118,11 +118,11 @@ model_stub = "meta-llama/Meta-Llama-3.1-405B-Instruct"
|
|
| 118 |
model_name = model_stub.split("/")[-1]
|
| 119 |
|
| 120 |
device_map = calculate_offload_device_map(
|
| 121 |
-
model_stub, reserve_for_hessians=False, num_gpus=8, torch_dtype=
|
| 122 |
)
|
| 123 |
|
| 124 |
model = SparseAutoModelForCausalLM.from_pretrained(
|
| 125 |
-
model_stub, torch_dtype=
|
| 126 |
)
|
| 127 |
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
| 128 |
|
|
@@ -193,9 +193,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 193 |
</td>
|
| 194 |
<td>87.41
|
| 195 |
</td>
|
| 196 |
-
<td>87.
|
| 197 |
</td>
|
| 198 |
-
<td>
|
| 199 |
</td>
|
| 200 |
</tr>
|
| 201 |
<tr>
|
|
@@ -203,9 +203,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 203 |
</td>
|
| 204 |
<td>88.11
|
| 205 |
</td>
|
| 206 |
-
<td>
|
| 207 |
</td>
|
| 208 |
-
<td>99.
|
| 209 |
</td>
|
| 210 |
</tr>
|
| 211 |
<tr>
|
|
@@ -213,9 +213,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 213 |
</td>
|
| 214 |
<td>94.97
|
| 215 |
</td>
|
| 216 |
-
<td>94.
|
| 217 |
</td>
|
| 218 |
-
<td>
|
| 219 |
</td>
|
| 220 |
</tr>
|
| 221 |
<tr>
|
|
@@ -223,9 +223,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 223 |
</td>
|
| 224 |
<td>95.98
|
| 225 |
</td>
|
| 226 |
-
<td>
|
| 227 |
</td>
|
| 228 |
-
<td>
|
| 229 |
</td>
|
| 230 |
</tr>
|
| 231 |
<tr>
|
|
@@ -233,9 +233,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 233 |
</td>
|
| 234 |
<td>88.54
|
| 235 |
</td>
|
| 236 |
-
<td>88.
|
| 237 |
</td>
|
| 238 |
-
<td>
|
| 239 |
</td>
|
| 240 |
</tr>
|
| 241 |
<tr>
|
|
@@ -243,9 +243,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 243 |
</td>
|
| 244 |
<td>87.21
|
| 245 |
</td>
|
| 246 |
-
<td>
|
| 247 |
</td>
|
| 248 |
-
<td>
|
| 249 |
</td>
|
| 250 |
</tr>
|
| 251 |
<tr>
|
|
@@ -253,9 +253,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 253 |
</td>
|
| 254 |
<td>65.31
|
| 255 |
</td>
|
| 256 |
-
<td>
|
| 257 |
</td>
|
| 258 |
-
<td>
|
| 259 |
</td>
|
| 260 |
</tr>
|
| 261 |
<tr>
|
|
@@ -263,9 +263,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 263 |
</td>
|
| 264 |
<td><strong>86.79</strong>
|
| 265 |
</td>
|
| 266 |
-
<td><strong>86.
|
| 267 |
</td>
|
| 268 |
-
<td><strong>99.
|
| 269 |
</td>
|
| 270 |
</tr>
|
| 271 |
</table>
|
|
|
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) with the updated 8 kv-heads.
|
| 36 |
+
It achieves an average score of 86.78 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 86.79.
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
|
|
| 118 |
model_name = model_stub.split("/")[-1]
|
| 119 |
|
| 120 |
device_map = calculate_offload_device_map(
|
| 121 |
+
model_stub, reserve_for_hessians=False, num_gpus=8, torch_dtype="auto"
|
| 122 |
)
|
| 123 |
|
| 124 |
model = SparseAutoModelForCausalLM.from_pretrained(
|
| 125 |
+
model_stub, torch_dtype="auto", device_map=device_map
|
| 126 |
)
|
| 127 |
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
| 128 |
|
|
|
|
| 193 |
</td>
|
| 194 |
<td>87.41
|
| 195 |
</td>
|
| 196 |
+
<td>87.41
|
| 197 |
</td>
|
| 198 |
+
<td>100.0%
|
| 199 |
</td>
|
| 200 |
</tr>
|
| 201 |
<tr>
|
|
|
|
| 203 |
</td>
|
| 204 |
<td>88.11
|
| 205 |
</td>
|
| 206 |
+
<td>88.02
|
| 207 |
</td>
|
| 208 |
+
<td>99.90%
|
| 209 |
</td>
|
| 210 |
</tr>
|
| 211 |
<tr>
|
|
|
|
| 213 |
</td>
|
| 214 |
<td>94.97
|
| 215 |
</td>
|
| 216 |
+
<td>94.88
|
| 217 |
</td>
|
| 218 |
+
<td>99.91%
|
| 219 |
</td>
|
| 220 |
</tr>
|
| 221 |
<tr>
|
|
|
|
| 223 |
</td>
|
| 224 |
<td>95.98
|
| 225 |
</td>
|
| 226 |
+
<td>96.29
|
| 227 |
</td>
|
| 228 |
+
<td>100.3%
|
| 229 |
</td>
|
| 230 |
</tr>
|
| 231 |
<tr>
|
|
|
|
| 233 |
</td>
|
| 234 |
<td>88.54
|
| 235 |
</td>
|
| 236 |
+
<td>88.54
|
| 237 |
</td>
|
| 238 |
+
<td>100.0%
|
| 239 |
</td>
|
| 240 |
</tr>
|
| 241 |
<tr>
|
|
|
|
| 243 |
</td>
|
| 244 |
<td>87.21
|
| 245 |
</td>
|
| 246 |
+
<td>86.98
|
| 247 |
</td>
|
| 248 |
+
<td>99.74%
|
| 249 |
</td>
|
| 250 |
</tr>
|
| 251 |
<tr>
|
|
|
|
| 253 |
</td>
|
| 254 |
<td>65.31
|
| 255 |
</td>
|
| 256 |
+
<td>65.33
|
| 257 |
</td>
|
| 258 |
+
<td>100.0%
|
| 259 |
</td>
|
| 260 |
</tr>
|
| 261 |
<tr>
|
|
|
|
| 263 |
</td>
|
| 264 |
<td><strong>86.79</strong>
|
| 265 |
</td>
|
| 266 |
+
<td><strong>86.78</strong>
|
| 267 |
</td>
|
| 268 |
+
<td><strong>99.99%</strong>
|
| 269 |
</td>
|
| 270 |
</tr>
|
| 271 |
</table>
|