Update README.md
Browse files
README.md
CHANGED
@@ -27,7 +27,7 @@ base_model: Qwen/Qwen3-32B
|
|
27 |
- **Activation quantization:** FP16
|
28 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
29 |
- **Release Date:** 6/25/2025
|
30 |
-
- **Version:**
|
31 |
- **Model Developers:** RedHatAI
|
32 |
|
33 |
This model is a quantized version of [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B).
|
@@ -35,7 +35,7 @@ It was evaluated on a several tasks to assess the its quality in comparison to t
|
|
35 |
|
36 |
### Model Optimizations
|
37 |
|
38 |
-
This model was obtained by quantizing the weights of [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) to FP4 data type, ready for inference with vLLM>=
|
39 |
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
|
40 |
|
41 |
Only the weights of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
|
@@ -53,7 +53,7 @@ from transformers import AutoTokenizer
|
|
53 |
model_id = "RedHatAI/Qwen3-32B-NVFP4A16"
|
54 |
number_gpus = 2
|
55 |
|
56 |
-
sampling_params = SamplingParams(temperature=
|
57 |
|
58 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
59 |
|
@@ -161,8 +161,7 @@ tokenizer.save_pretrained(SAVE_DIR)
|
|
161 |
|
162 |
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness).
|
163 |
|
164 |
-
|
165 |
-
|
166 |
<table>
|
167 |
<thead>
|
168 |
<tr>
|
@@ -176,115 +175,135 @@ This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, an
|
|
176 |
<tbody>
|
177 |
<tr>
|
178 |
<td rowspan="7"><b>OpenLLM V1</b></td>
|
179 |
-
<td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
<td></td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
<td></td>
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
<td></td>
|
|
|
|
|
|
|
|
|
183 |
</tr>
|
184 |
-
|
185 |
-
<td>MMLU</td>
|
186 |
-
<td></td>
|
187 |
-
<td></td>
|
188 |
-
<td></td>
|
189 |
-
</tr>
|
190 |
-
<tr>
|
191 |
-
<td>ARC Challenge (0-shot)</td>
|
192 |
-
<td></td>
|
193 |
-
<td></td>
|
194 |
-
<td></td>
|
195 |
-
</tr>
|
196 |
-
<tr>
|
197 |
-
<td>GSM8K (8-shot, strict-match)</td>
|
198 |
-
<td></td>
|
199 |
-
<td></td>
|
200 |
-
<td></td>
|
201 |
-
</tr>
|
202 |
-
<tr>
|
203 |
-
<td>Hellaswag (10-shot)</td>
|
204 |
-
<td></td>
|
205 |
-
<td></td>
|
206 |
-
<td></td>
|
207 |
-
</tr>
|
208 |
-
<tr>
|
209 |
-
<td>Winogrande (5-shot)</td>
|
210 |
-
<td></td>
|
211 |
-
<td></td>
|
212 |
-
<td></td>
|
213 |
-
</tr>
|
214 |
-
<tr>
|
215 |
-
<td>TruthfulQA (0-shot, mc2)</td>
|
216 |
-
<td></td>
|
217 |
-
<td></td>
|
218 |
-
<td></td>
|
219 |
-
</tr>
|
220 |
-
<tr>
|
221 |
-
<td><b>Average</b></td>
|
222 |
-
<td><b></b></td>
|
223 |
-
<td><b></b></td>
|
224 |
-
<td><b>%</b></td>
|
225 |
-
</tr>
|
226 |
-
<tr>
|
227 |
-
<td rowspan="7"><b>OpenLLM V2</b></td>
|
228 |
-
<td>MMLU-Pro (5-shot)</td>
|
229 |
-
<td></td>
|
230 |
-
<td></td>
|
231 |
-
<td></td>
|
232 |
-
</tr>
|
233 |
-
<tr>
|
234 |
-
<td>IFEval (0-shot)</td>
|
235 |
-
<td></td>
|
236 |
-
<td></td>
|
237 |
-
<td></td>
|
238 |
-
</tr>
|
239 |
-
<tr>
|
240 |
-
<td>BBH (3-shot)</td>
|
241 |
-
<td></td>
|
242 |
-
<td></td>
|
243 |
-
<td></td>
|
244 |
-
</tr>
|
245 |
-
<tr>
|
246 |
-
<td>Math-|v|-5 (4-shot)</td>
|
247 |
-
<td></td>
|
248 |
-
<td></td>
|
249 |
-
<td></td>
|
250 |
-
</tr>
|
251 |
-
<tr>
|
252 |
-
<td>GPQA (0-shot)</td>
|
253 |
-
<td></td>
|
254 |
-
<td></td>
|
255 |
-
<td></td>
|
256 |
-
</tr>
|
257 |
-
<tr>
|
258 |
-
<td>MuSR (0-shot)</td>
|
259 |
-
<td></td>
|
260 |
-
<td></td>
|
261 |
-
<td></td>
|
262 |
-
</tr>
|
263 |
-
<tr>
|
264 |
-
<td><b>Average</b></td>
|
265 |
-
<td><b></b></td>
|
266 |
-
<td><b></b></td>
|
267 |
-
<td><b>%</b></td>
|
268 |
-
</tr>
|
269 |
-
|
270 |
-
<tr>
|
271 |
-
<td><b>Coding</b></td>
|
272 |
-
<td>HumanEval pass@1</td>
|
273 |
-
<td></td>
|
274 |
-
<td></td>
|
275 |
-
<td></td>
|
276 |
-
</tr>
|
277 |
-
<tr>
|
278 |
-
<td></td>
|
279 |
-
<td>HumanEval_64 pass@2</td>
|
280 |
-
<td></td>
|
281 |
-
<td></td>
|
282 |
-
<td></td>
|
283 |
-
</tr>
|
284 |
-
</tbody>
|
285 |
</table>
|
286 |
|
287 |
-
|
288 |
### Reproduction
|
289 |
|
290 |
The results were obtained using the following commands:
|
|
|
27 |
- **Activation quantization:** FP16
|
28 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
29 |
- **Release Date:** 6/25/2025
|
30 |
+
- **Version:** 10
|
31 |
- **Model Developers:** RedHatAI
|
32 |
|
33 |
This model is a quantized version of [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B).
|
|
|
35 |
|
36 |
### Model Optimizations
|
37 |
|
38 |
+
This model was obtained by quantizing the weights of [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) to FP4 data type, ready for inference with vLLM>=9.1
|
39 |
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
|
40 |
|
41 |
Only the weights of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
|
|
|
53 |
model_id = "RedHatAI/Qwen3-32B-NVFP4A16"
|
54 |
number_gpus = 2
|
55 |
|
56 |
+
sampling_params = SamplingParams(temperature=6, top_p=9, max_tokens=256)
|
57 |
|
58 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
59 |
|
|
|
161 |
|
162 |
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness).
|
163 |
|
164 |
+
<h3>Accuracy</h3>
|
|
|
165 |
<table>
|
166 |
<thead>
|
167 |
<tr>
|
|
|
175 |
<tbody>
|
176 |
<tr>
|
177 |
<td rowspan="7"><b>OpenLLM V1</b></td>
|
178 |
+
<td>MMLU</td>
|
179 |
+
<td>80.94</td>
|
180 |
+
<td>80.57</td>
|
181 |
+
<td>99.55%</td>
|
182 |
+
</tr>
|
183 |
+
<tr>
|
184 |
+
<td>ARC Challenge (0-shot)</td>
|
185 |
+
<td>68.34</td>
|
186 |
+
<td>68.43</td>
|
187 |
+
<td>100.12%</td>
|
188 |
+
</tr>
|
189 |
+
<tr>
|
190 |
+
<td>GSM8K (8-shot, strict-match)</td>
|
191 |
+
<td>87.34</td>
|
192 |
+
<td>87.72</td>
|
193 |
+
<td>100.43%</td>
|
194 |
+
</tr>
|
195 |
+
<tr>
|
196 |
+
<td>Hellaswag (10-shot)</td>
|
197 |
+
<td>71.16</td>
|
198 |
+
<td>70.48</td>
|
199 |
+
<td>99.05%</td>
|
200 |
+
</tr>
|
201 |
+
<tr>
|
202 |
+
<td>Winogrande (5-shot)</td>
|
203 |
+
<td>69.93</td>
|
204 |
+
<td>70.09</td>
|
205 |
+
<td>100.23%</td>
|
206 |
+
</tr>
|
207 |
+
<tr>
|
208 |
+
<td>TruthfulQA (0-shot, mc2)</td>
|
209 |
+
<td>58.63</td>
|
210 |
+
<td>58.96</td>
|
211 |
+
<td>100.56%</td>
|
212 |
+
</tr>
|
213 |
+
<tr>
|
214 |
+
<td><b>Average</b></td>
|
215 |
+
<td><b>72.72</b></td>
|
216 |
+
<td><b>72.71</b></td>
|
217 |
+
<td><b>99.98%</b></td>
|
218 |
+
</tr>
|
219 |
+
<tr>
|
220 |
+
<td rowspan="7"><b>OpenLLM V2</b></td>
|
221 |
+
<td>MMLU-Pro (5-shot)</td>
|
222 |
+
<td>54.48</td>
|
223 |
+
<td>51.61</td>
|
224 |
+
<td>94.73%</td>
|
225 |
+
</tr>
|
226 |
+
<tr>
|
227 |
+
<td>IFEval (0-shot)</td>
|
228 |
+
<td>88.85</td>
|
229 |
+
<td>88.49</td>
|
230 |
+
<td>99.59%</td>
|
231 |
+
</tr>
|
232 |
+
<tr>
|
233 |
+
<td>BBH (3-shot)</td>
|
234 |
+
<td>62.61</td>
|
235 |
+
<td>62.14</td>
|
236 |
+
<td>99.25%</td>
|
237 |
+
</tr>
|
238 |
+
<tr>
|
239 |
+
<td>Math-|v|-5 (4-shot)</td>
|
240 |
+
<td>56.87</td>
|
241 |
+
<td>56.27</td>
|
242 |
+
<td>98.94%</td>
|
243 |
+
</tr>
|
244 |
+
<tr>
|
245 |
+
<td>GPQA (0-shot)</td>
|
246 |
+
<td>30.45</td>
|
247 |
+
<td>30.29</td>
|
248 |
+
<td>99.47%</td>
|
249 |
+
</tr>
|
250 |
+
<tr>
|
251 |
+
<td>MuSR (0-shot)</td>
|
252 |
+
<td>39.15</td>
|
253 |
+
<td>40.48</td>
|
254 |
+
<td>103.40%</td>
|
255 |
+
</tr>
|
256 |
+
<tr>
|
257 |
+
<td><b>Average</b></td>
|
258 |
+
<td><b>55.40</b></td>
|
259 |
+
<td><b>54.88</b></td>
|
260 |
+
<td><b>99.06%</b></td>
|
261 |
+
</tr>
|
262 |
+
<tr>
|
263 |
+
<td><b>Coding</b></td>
|
264 |
+
<td>HumanEval Instruct pass@1</td>
|
265 |
+
<td>88.41</td>
|
266 |
+
<td>87.20</td>
|
267 |
+
<td>98.63%</td>
|
268 |
+
</tr>
|
269 |
+
<tr>
|
270 |
<td></td>
|
271 |
+
<td>HumanEval 64 Instruct pass@2</td>
|
272 |
+
<td>90.27</td>
|
273 |
+
<td>89.66</td>
|
274 |
+
<td>99.32%</td>
|
275 |
+
</tr>
|
276 |
+
<tr>
|
277 |
+
<td></td>
|
278 |
+
<td>HumanEval 64 Instruct pass@8</td>
|
279 |
+
<td>92.20</td>
|
280 |
+
<td>92.13</td>
|
281 |
+
<td>99.92%</td>
|
282 |
+
</tr>
|
283 |
+
<tr>
|
284 |
+
<td></td>
|
285 |
+
<td>HumanEval 64 Instruct pass@16</td>
|
286 |
+
<td>92.96</td>
|
287 |
+
<td>93.27</td>
|
288 |
+
<td>100.33%</td>
|
289 |
+
</tr>
|
290 |
+
<tr>
|
291 |
<td></td>
|
292 |
+
<td>HumanEval 64 Instruct pass@32</td>
|
293 |
+
<td>93.58</td>
|
294 |
+
<td>94.47</td>
|
295 |
+
<td>100.95%</td>
|
296 |
+
</tr>
|
297 |
+
<tr>
|
298 |
<td></td>
|
299 |
+
<td>HumanEval 64 Instruct pass@64</td>
|
300 |
+
<td>93.90</td>
|
301 |
+
<td>95.73</td>
|
302 |
+
<td>101.95%</td>
|
303 |
</tr>
|
304 |
+
</tbody>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
</table>
|
306 |
|
|
|
307 |
### Reproduction
|
308 |
|
309 |
The results were obtained using the following commands:
|