Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,236 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- vllm
|
5 |
+
- vision
|
6 |
+
- w4a16
|
7 |
+
license: gemma
|
8 |
+
base_model: google/gemma-3-27b-it
|
9 |
+
library_name: transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# gemma-3-27b-it-quantized.w4a16
|
13 |
+
|
14 |
+
## Model Overview
|
15 |
+
- **Model Architecture:** google/gemma-3-27b-it
|
16 |
+
- **Input:** Vision-Text
|
17 |
+
- **Output:** Text
|
18 |
+
- **Model Optimizations:**
|
19 |
+
- **Weight quantization:** INT4
|
20 |
+
- **Activation quantization:** FP16
|
21 |
+
- **Release Date:** 6/4/2025
|
22 |
+
- **Version:** 1.0
|
23 |
+
- **Model Developers:** RedHatAI
|
24 |
+
|
25 |
+
Quantized version of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it).
|
26 |
+
|
27 |
+
### Model Optimizations
|
28 |
+
|
29 |
+
This model was obtained by quantizing the weights of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) to INT4 data type, ready for inference with vLLM >= 0.8.0.
|
30 |
+
|
31 |
+
## Deployment
|
32 |
+
|
33 |
+
### Use with vLLM
|
34 |
+
|
35 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
36 |
+
|
37 |
+
```python
|
38 |
+
from vllm.assets.image import ImageAsset
|
39 |
+
from vllm import LLM, SamplingParams
|
40 |
+
|
41 |
+
# prepare model
|
42 |
+
llm = LLM(
|
43 |
+
model="nm-testing/gemma-3-27b-it-quantized.w4a16",
|
44 |
+
trust_remote_code=True,
|
45 |
+
max_model_len=4096,
|
46 |
+
max_num_seqs=2,
|
47 |
+
)
|
48 |
+
|
49 |
+
# prepare inputs
|
50 |
+
question = "What is the content of this image?"
|
51 |
+
inputs = {
|
52 |
+
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
|
53 |
+
"multi_modal_data": {
|
54 |
+
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
|
55 |
+
},
|
56 |
+
}
|
57 |
+
|
58 |
+
# generate response
|
59 |
+
print("========== SAMPLE GENERATION ==============")
|
60 |
+
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
|
61 |
+
print(f"PROMPT : {outputs[0].prompt}")
|
62 |
+
print(f"RESPONSE: {outputs[0].outputs[0].text}")
|
63 |
+
print("==========================================")
|
64 |
+
```
|
65 |
+
|
66 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
67 |
+
|
68 |
+
## Creation
|
69 |
+
|
70 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below:
|
71 |
+
|
72 |
+
<details>
|
73 |
+
<summary>Model Creation Code</summary>
|
74 |
+
|
75 |
+
```python
|
76 |
+
import base64
|
77 |
+
from io import BytesIO
|
78 |
+
import torch
|
79 |
+
from datasets import load_dataset
|
80 |
+
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
|
81 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
82 |
+
from llmcompressor.transformers import oneshot
|
83 |
+
|
84 |
+
|
85 |
+
# Load model.
|
86 |
+
model_id = "google/gemma-3-27b-it"
|
87 |
+
model = Gemma3ForConditionalGeneration.from_pretrained(
|
88 |
+
model_id,
|
89 |
+
device_map="auto",
|
90 |
+
torch_dtype="auto",
|
91 |
+
)
|
92 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
93 |
+
|
94 |
+
# Oneshot arguments
|
95 |
+
DATASET_ID = "neuralmagic/calibration"
|
96 |
+
DATASET_SPLIT = {"LLM": "train[:1024]"}
|
97 |
+
NUM_CALIBRATION_SAMPLES = 1024
|
98 |
+
MAX_SEQUENCE_LENGTH = 2048
|
99 |
+
|
100 |
+
# Load dataset and preprocess.
|
101 |
+
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
102 |
+
ds = ds.shuffle(seed=42)
|
103 |
+
|
104 |
+
dampening_frac=0.07
|
105 |
+
|
106 |
+
def data_collator(batch):
|
107 |
+
assert len(batch) == 1, "Only batch size of 1 is supported for calibration"
|
108 |
+
item = batch[0]
|
109 |
+
collated = {}
|
110 |
+
import torch
|
111 |
+
|
112 |
+
|
113 |
+
for key, value in item.items():
|
114 |
+
if isinstance(value, torch.Tensor):
|
115 |
+
collated[key] = value.unsqueeze(0)
|
116 |
+
elif isinstance(value, list) and isinstance(value[0][0], int):
|
117 |
+
# Handle tokenized inputs like input_ids, attention_mask
|
118 |
+
collated[key] = torch.tensor(value)
|
119 |
+
elif isinstance(value, list) and isinstance(value[0][0], float):
|
120 |
+
# Handle possible float sequences
|
121 |
+
collated[key] = torch.tensor(value)
|
122 |
+
elif isinstance(value, list) and isinstance(value[0][0], torch.Tensor):
|
123 |
+
# Handle batched image data (e.g., pixel_values as [C, H, W])
|
124 |
+
collated[key] = torch.stack(value) # -> [1, C, H, W]
|
125 |
+
elif isinstance(value, torch.Tensor):
|
126 |
+
collated[key] = value
|
127 |
+
else:
|
128 |
+
print(f"[WARN] Unrecognized type in collator for key={key}, type={type(value)}")
|
129 |
+
|
130 |
+
return collated
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
# Recipe
|
135 |
+
recipe = [
|
136 |
+
GPTQModifier(
|
137 |
+
targets="Linear",
|
138 |
+
scheme="W4A16",
|
139 |
+
ignore: ["re:.*lm_head.*", "re:.*embed_tokens.*", "re:vision_tower.*", "re:multi_modal_projector.*"],
|
140 |
+
sequential_update: True,
|
141 |
+
)
|
142 |
+
]
|
143 |
+
|
144 |
+
SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w4a16"
|
145 |
+
|
146 |
+
# Perform oneshot
|
147 |
+
oneshot(
|
148 |
+
model=model,
|
149 |
+
tokenizer=model_id,
|
150 |
+
dataset=ds,
|
151 |
+
recipe=recipe,
|
152 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
153 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
154 |
+
trust_remote_code_model=True,
|
155 |
+
data_collator=data_collator,
|
156 |
+
output_dir=SAVE_DIR
|
157 |
+
)
|
158 |
+
```
|
159 |
+
</details>
|
160 |
+
|
161 |
+
## Evaluation
|
162 |
+
|
163 |
+
The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
|
164 |
+
|
165 |
+
<details>
|
166 |
+
<summary>Evaluation Commands</summary>
|
167 |
+
|
168 |
+
### OpenLLM v1
|
169 |
+
```
|
170 |
+
lm_eval \
|
171 |
+
--model vllm \
|
172 |
+
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
|
173 |
+
--tasks openllm \
|
174 |
+
--batch_size auto
|
175 |
+
```
|
176 |
+
</details>
|
177 |
+
|
178 |
+
|
179 |
+
### Accuracy
|
180 |
+
|
181 |
+
<table>
|
182 |
+
<thead>
|
183 |
+
<tr>
|
184 |
+
<th>Category</th>
|
185 |
+
<th>Metric</th>
|
186 |
+
<th>google/gemma-3-27b-it</th>
|
187 |
+
<th>nm-testing/gemma-3-27b-it-quantized.w8a8</th>
|
188 |
+
<th>Recovery (%)</th>
|
189 |
+
</tr>
|
190 |
+
</thead>
|
191 |
+
<tbody>
|
192 |
+
<tr>
|
193 |
+
<td rowspan="7"><b>OpenLLM V1</b></td>
|
194 |
+
<td>ARC Challenge</td>
|
195 |
+
<td>72.53%</td>
|
196 |
+
<td>72.35%</td>
|
197 |
+
<td>99.76%</td>
|
198 |
+
</tr>
|
199 |
+
<tr>
|
200 |
+
<td>GSM8K</td>
|
201 |
+
<td>92.12%</td>
|
202 |
+
<td>91.66%</td>
|
203 |
+
<td>99.51%</td>
|
204 |
+
</tr>
|
205 |
+
<tr>
|
206 |
+
<td>Hellaswag</td>
|
207 |
+
<td>85.78%</td>
|
208 |
+
<td>84.97%</td>
|
209 |
+
<td>99.06%</td>
|
210 |
+
</tr>
|
211 |
+
<tr>
|
212 |
+
<td>MMLU</td>
|
213 |
+
<td>77.53%</td>
|
214 |
+
<td>76.77%</td>
|
215 |
+
<td>99.02%</td>
|
216 |
+
</tr>
|
217 |
+
<tr>
|
218 |
+
<td>Truthfulqa (mc2)</td>
|
219 |
+
<td>62.20%</td>
|
220 |
+
<td>62.57%</td>
|
221 |
+
<td>100.59%</td>
|
222 |
+
</tr>
|
223 |
+
<tr>
|
224 |
+
<td>Winogrande</td>
|
225 |
+
<td>79.40%</td>
|
226 |
+
<td>79.79%%</td>
|
227 |
+
<td>100.50%</td>
|
228 |
+
</tr>
|
229 |
+
<tr>
|
230 |
+
<td><b>Average Score</b></td>
|
231 |
+
<td><b>78.26%</b></td>
|
232 |
+
<td><b>78.02%</b></td>
|
233 |
+
<td><b>99.70%</b></td>
|
234 |
+
</tr>
|
235 |
+
</tbody>
|
236 |
+
</table>
|