|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import random | 
					
						
						|  | import yaml | 
					
						
						|  | import time | 
					
						
						|  | from munch import Munch | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torchaudio | 
					
						
						|  | import librosa | 
					
						
						|  | import click | 
					
						
						|  | import shutil | 
					
						
						|  | import warnings | 
					
						
						|  | warnings.simplefilter('ignore') | 
					
						
						|  | from torch.utils.tensorboard import SummaryWriter | 
					
						
						|  |  | 
					
						
						|  | from meldataset import build_dataloader | 
					
						
						|  |  | 
					
						
						|  | from Utils.ASR.models import ASRCNN | 
					
						
						|  | from Utils.JDC.model import JDCNet | 
					
						
						|  | from Utils.PLBERT.util import load_plbert | 
					
						
						|  |  | 
					
						
						|  | from models import * | 
					
						
						|  | from losses import * | 
					
						
						|  | from utils import * | 
					
						
						|  |  | 
					
						
						|  | from Modules.slmadv import SLMAdversarialLoss | 
					
						
						|  | from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule | 
					
						
						|  |  | 
					
						
						|  | from optimizers import build_optimizer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from accelerate import Accelerator, DistributedDataParallelKwargs | 
					
						
						|  | from accelerate.utils import tqdm, ProjectConfiguration | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | from accelerate.logging import get_logger | 
					
						
						|  | from logging import StreamHandler | 
					
						
						|  |  | 
					
						
						|  | logger = get_logger(__name__) | 
					
						
						|  | logger.setLevel(logging.DEBUG) | 
					
						
						|  |  | 
					
						
						|  | @click.command() | 
					
						
						|  | @click.option('-p', '--config_path', default='Configs/config_ft.yml', type=str) | 
					
						
						|  | def main(config_path): | 
					
						
						|  | config = yaml.safe_load(open(config_path)) | 
					
						
						|  |  | 
					
						
						|  | log_dir = config['log_dir'] | 
					
						
						|  | if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True) | 
					
						
						|  | shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path))) | 
					
						
						|  | writer = SummaryWriter(log_dir + "/tensorboard") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | file_handler = logging.FileHandler(osp.join(log_dir, 'train.log')) | 
					
						
						|  | file_handler.setLevel(logging.DEBUG) | 
					
						
						|  | file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s')) | 
					
						
						|  | logger.logger.addHandler(file_handler) | 
					
						
						|  |  | 
					
						
						|  | batch_size = config.get('batch_size', 10) | 
					
						
						|  |  | 
					
						
						|  | epochs = config.get('epochs', 200) | 
					
						
						|  | save_freq = config.get('save_freq', 2) | 
					
						
						|  | log_interval = config.get('log_interval', 10) | 
					
						
						|  | saving_epoch = config.get('save_freq', 2) | 
					
						
						|  |  | 
					
						
						|  | data_params = config.get('data_params', None) | 
					
						
						|  | sr = config['preprocess_params'].get('sr', 24000) | 
					
						
						|  | train_path = data_params['train_data'] | 
					
						
						|  | val_path = data_params['val_data'] | 
					
						
						|  | root_path = data_params['root_path'] | 
					
						
						|  | min_length = data_params['min_length'] | 
					
						
						|  | OOD_data = data_params['OOD_data'] | 
					
						
						|  |  | 
					
						
						|  | max_len = config.get('max_len', 200) | 
					
						
						|  |  | 
					
						
						|  | loss_params = Munch(config['loss_params']) | 
					
						
						|  | diff_epoch = loss_params.diff_epoch | 
					
						
						|  | joint_epoch = loss_params.joint_epoch | 
					
						
						|  |  | 
					
						
						|  | optimizer_params = Munch(config['optimizer_params']) | 
					
						
						|  |  | 
					
						
						|  | train_list, val_list = get_data_path_list(train_path, val_path) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | tracker = data_params['logger'] | 
					
						
						|  | except KeyError: | 
					
						
						|  | tracker = "mlflow" | 
					
						
						|  |  | 
					
						
						|  | ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True, broadcast_buffers=False) | 
					
						
						|  | configAcc = ProjectConfiguration(project_dir=log_dir, logging_dir=log_dir) | 
					
						
						|  | accelerator = Accelerator(log_with=tracker, | 
					
						
						|  | project_config=configAcc, | 
					
						
						|  | split_batches=True, | 
					
						
						|  | kwargs_handlers=[ddp_kwargs], | 
					
						
						|  | mixed_precision='bf16') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device = accelerator.device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with accelerator.main_process_first(): | 
					
						
						|  |  | 
					
						
						|  | train_dataloader = build_dataloader(train_list, | 
					
						
						|  | root_path, | 
					
						
						|  | OOD_data=OOD_data, | 
					
						
						|  | min_length=min_length, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | num_workers=2, | 
					
						
						|  | dataset_config={}, | 
					
						
						|  | device=device) | 
					
						
						|  |  | 
					
						
						|  | val_dataloader = build_dataloader(val_list, | 
					
						
						|  | root_path, | 
					
						
						|  | OOD_data=OOD_data, | 
					
						
						|  | min_length=min_length, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | validation=True, | 
					
						
						|  | num_workers=0, | 
					
						
						|  | device=device, | 
					
						
						|  | dataset_config={}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ASR_config = config.get('ASR_config', False) | 
					
						
						|  | ASR_path = config.get('ASR_path', False) | 
					
						
						|  | text_aligner = load_ASR_models(ASR_path, ASR_config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | F0_path = config.get('F0_path', False) | 
					
						
						|  | pitch_extractor = load_F0_models(F0_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BERT_path = config.get('PLBERT_dir', False) | 
					
						
						|  | plbert = load_plbert(BERT_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_params = recursive_munch(config['model_params']) | 
					
						
						|  | multispeaker = model_params.multispeaker | 
					
						
						|  | model = build_model(model_params, text_aligner, pitch_extractor, plbert) | 
					
						
						|  | _ = [model[key].to(device) for key in model] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for key in model: | 
					
						
						|  | if key != "mpd" and key != "msd" and key != "wd": | 
					
						
						|  | model[key] = accelerator.prepare(model[key]) | 
					
						
						|  |  | 
					
						
						|  | start_epoch = 0 | 
					
						
						|  | iters = 0 | 
					
						
						|  |  | 
					
						
						|  | load_pretrained = config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False) | 
					
						
						|  |  | 
					
						
						|  | if not load_pretrained: | 
					
						
						|  | if config.get('first_stage_path', '') != '': | 
					
						
						|  | first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth')) | 
					
						
						|  | print('Loading the first stage model at %s ...' % first_stage_path) | 
					
						
						|  | model, _, start_epoch, iters = load_checkpoint(model, | 
					
						
						|  | None, | 
					
						
						|  | first_stage_path, | 
					
						
						|  | load_only_params=True, | 
					
						
						|  | ignore_modules=['bert', 'bert_encoder', 'predictor', 'predictor_encoder', 'msd', 'mpd', 'wd', 'diffusion']) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | diff_epoch += start_epoch | 
					
						
						|  | joint_epoch += start_epoch | 
					
						
						|  | epochs += start_epoch | 
					
						
						|  |  | 
					
						
						|  | model.predictor_encoder = copy.deepcopy(model.style_encoder) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError('You need to specify the path to the first stage model.') | 
					
						
						|  |  | 
					
						
						|  | gl = GeneratorLoss(model.mpd, model.msd).to(device) | 
					
						
						|  | dl = DiscriminatorLoss(model.mpd, model.msd).to(device) | 
					
						
						|  | wl = WavLMLoss(model_params.slm.model, | 
					
						
						|  | model.wd, | 
					
						
						|  | sr, | 
					
						
						|  | model_params.slm.sr).to(device) | 
					
						
						|  |  | 
					
						
						|  | gl = accelerator.prepare(gl) | 
					
						
						|  | dl = accelerator.prepare(dl) | 
					
						
						|  | wl = accelerator.prepare(wl) | 
					
						
						|  |  | 
					
						
						|  | sampler = DiffusionSampler( | 
					
						
						|  | model.diffusion.module.diffusion, | 
					
						
						|  | sampler=ADPM2Sampler(), | 
					
						
						|  | sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), | 
					
						
						|  | clamp=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | scheduler_params = { | 
					
						
						|  | "max_lr": optimizer_params.lr, | 
					
						
						|  | "pct_start": float(0), | 
					
						
						|  | "epochs": epochs, | 
					
						
						|  | "steps_per_epoch": len(train_dataloader), | 
					
						
						|  | } | 
					
						
						|  | scheduler_params_dict= {key: scheduler_params.copy() for key in model} | 
					
						
						|  | scheduler_params_dict['bert']['max_lr'] = optimizer_params.bert_lr * 2 | 
					
						
						|  | scheduler_params_dict['decoder']['max_lr'] = optimizer_params.ft_lr * 2 | 
					
						
						|  | scheduler_params_dict['style_encoder']['max_lr'] = optimizer_params.ft_lr * 2 | 
					
						
						|  |  | 
					
						
						|  | optimizer = build_optimizer({key: model[key].parameters() for key in model}, | 
					
						
						|  | scheduler_params_dict=scheduler_params_dict, lr=optimizer_params.lr) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for g in optimizer.optimizers['bert'].param_groups: | 
					
						
						|  | g['betas'] = (0.9, 0.99) | 
					
						
						|  | g['lr'] = optimizer_params.bert_lr | 
					
						
						|  | g['initial_lr'] = optimizer_params.bert_lr | 
					
						
						|  | g['min_lr'] = 0 | 
					
						
						|  | g['weight_decay'] = 0.01 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for module in ["decoder", "style_encoder"]: | 
					
						
						|  | for g in optimizer.optimizers[module].param_groups: | 
					
						
						|  | g['betas'] = (0.0, 0.99) | 
					
						
						|  | g['lr'] = optimizer_params.ft_lr | 
					
						
						|  | g['initial_lr'] = optimizer_params.ft_lr | 
					
						
						|  | g['min_lr'] = 0 | 
					
						
						|  | g['weight_decay'] = 1e-4 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if load_pretrained: | 
					
						
						|  | model, optimizer, start_epoch, iters = load_checkpoint(model,  optimizer, config['pretrained_model'], | 
					
						
						|  | load_only_params=config.get('load_only_params', True)) | 
					
						
						|  |  | 
					
						
						|  | n_down = model.text_aligner.module.n_down | 
					
						
						|  |  | 
					
						
						|  | best_loss = float('inf') | 
					
						
						|  | loss_train_record = list([]) | 
					
						
						|  | loss_test_record = list([]) | 
					
						
						|  | iters = 0 | 
					
						
						|  |  | 
					
						
						|  | criterion = nn.L1Loss() | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | stft_loss = MultiResolutionSTFTLoss().to(device) | 
					
						
						|  |  | 
					
						
						|  | print('BERT', optimizer.optimizers['bert']) | 
					
						
						|  | print('decoder', optimizer.optimizers['decoder']) | 
					
						
						|  |  | 
					
						
						|  | start_ds = False | 
					
						
						|  |  | 
					
						
						|  | running_std = [] | 
					
						
						|  |  | 
					
						
						|  | slmadv_params = Munch(config['slmadv_params']) | 
					
						
						|  | slmadv = SLMAdversarialLoss(model, wl, sampler, | 
					
						
						|  | slmadv_params.min_len, | 
					
						
						|  | slmadv_params.max_len, | 
					
						
						|  | batch_percentage=slmadv_params.batch_percentage, | 
					
						
						|  | skip_update=slmadv_params.iter, | 
					
						
						|  | sig=slmadv_params.sig | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for k, v in optimizer.optimizers.items(): | 
					
						
						|  | optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k]) | 
					
						
						|  | optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k]) | 
					
						
						|  |  | 
					
						
						|  | train_dataloader = accelerator.prepare(train_dataloader) | 
					
						
						|  | val_dataloader = accelerator.prepare(val_dataloader) | 
					
						
						|  |  | 
					
						
						|  | for epoch in range(start_epoch, epochs): | 
					
						
						|  | running_loss = 0 | 
					
						
						|  | start_time = time.time() | 
					
						
						|  |  | 
					
						
						|  | _ = [model[key].eval() for key in model] | 
					
						
						|  |  | 
					
						
						|  | model.text_aligner.train() | 
					
						
						|  | model.text_encoder.train() | 
					
						
						|  |  | 
					
						
						|  | model.predictor.train() | 
					
						
						|  | model.bert_encoder.train() | 
					
						
						|  | model.bert.train() | 
					
						
						|  | model.msd.train() | 
					
						
						|  | model.mpd.train() | 
					
						
						|  |  | 
					
						
						|  | for i, batch in enumerate(train_dataloader): | 
					
						
						|  | waves = batch[0] | 
					
						
						|  | batch = [b.to(device) for b in batch[1:]] | 
					
						
						|  | texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device) | 
					
						
						|  | mel_mask = length_to_mask(mel_input_length).to(device) | 
					
						
						|  | text_mask = length_to_mask(input_lengths).to(texts.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if multispeaker and epoch >= diff_epoch: | 
					
						
						|  | ref_ss = model.style_encoder(ref_mels.unsqueeze(1)) | 
					
						
						|  | ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1)) | 
					
						
						|  | ref = torch.cat([ref_ss, ref_sp], dim=1) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts) | 
					
						
						|  | s2s_attn = s2s_attn.transpose(-1, -2) | 
					
						
						|  | s2s_attn = s2s_attn[..., 1:] | 
					
						
						|  | s2s_attn = s2s_attn.transpose(-1, -2) | 
					
						
						|  | except: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down)) | 
					
						
						|  | s2s_attn_mono = maximum_path(s2s_attn, mask_ST) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t_en = model.text_encoder(texts, input_lengths, text_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if bool(random.getrandbits(1)): | 
					
						
						|  | asr = (t_en @ s2s_attn) | 
					
						
						|  | else: | 
					
						
						|  | asr = (t_en @ s2s_attn_mono) | 
					
						
						|  |  | 
					
						
						|  | d_gt = s2s_attn_mono.sum(axis=-1).detach() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ss = [] | 
					
						
						|  | gs = [] | 
					
						
						|  | for bib in range(len(mel_input_length)): | 
					
						
						|  | mel_length = int(mel_input_length[bib].item()) | 
					
						
						|  | mel = mels[bib, :, :mel_input_length[bib]] | 
					
						
						|  | s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1)) | 
					
						
						|  | ss.append(s) | 
					
						
						|  | s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) | 
					
						
						|  | gs.append(s) | 
					
						
						|  |  | 
					
						
						|  | s_dur = torch.stack(ss).squeeze() | 
					
						
						|  | gs = torch.stack(gs).squeeze() | 
					
						
						|  | s_trg = torch.cat([gs, s_dur], dim=-1).detach() | 
					
						
						|  |  | 
					
						
						|  | bert_dur = model.bert(texts, attention_mask=(~text_mask).int()) | 
					
						
						|  | d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if epoch >= diff_epoch: | 
					
						
						|  | num_steps = np.random.randint(3, 5) | 
					
						
						|  |  | 
					
						
						|  | if model_params.diffusion.dist.estimate_sigma_data: | 
					
						
						|  | model.diffusion.module.diffusion.sigma_data = s_trg.std(axis=-1).mean().item() | 
					
						
						|  | running_std.append(model.diffusion.module.diffusion.sigma_data) | 
					
						
						|  |  | 
					
						
						|  | if multispeaker: | 
					
						
						|  | s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device), | 
					
						
						|  | embedding=bert_dur, | 
					
						
						|  | embedding_scale=1, | 
					
						
						|  | features=ref, | 
					
						
						|  | embedding_mask_proba=0.1, | 
					
						
						|  | num_steps=num_steps).squeeze(1) | 
					
						
						|  | loss_diff = model.diffusion(s_trg.unsqueeze(1), embedding=bert_dur, features=ref).mean() | 
					
						
						|  | loss_sty = F.l1_loss(s_preds, s_trg.detach()) | 
					
						
						|  | else: | 
					
						
						|  | s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device), | 
					
						
						|  | embedding=bert_dur, | 
					
						
						|  | embedding_scale=1, | 
					
						
						|  | embedding_mask_proba=0.1, | 
					
						
						|  | num_steps=num_steps).squeeze(1) | 
					
						
						|  | loss_diff = model.diffusion.module.diffusion(s_trg.unsqueeze(1), embedding=bert_dur).mean() | 
					
						
						|  | loss_sty = F.l1_loss(s_preds, s_trg.detach()) | 
					
						
						|  | else: | 
					
						
						|  | loss_sty = 0 | 
					
						
						|  | loss_diff = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | s_loss = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | d, p = model.predictor(d_en, s_dur, | 
					
						
						|  | input_lengths, | 
					
						
						|  | s2s_attn_mono, | 
					
						
						|  | text_mask) | 
					
						
						|  |  | 
					
						
						|  | mel_len_st = int(mel_input_length.min().item() / 2 - 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mel_input_length_all = accelerator.gather(mel_input_length) | 
					
						
						|  | mel_len = min([int(mel_input_length_all.min().item() / 2 - 1), max_len // 2]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | en = [] | 
					
						
						|  | gt = [] | 
					
						
						|  | p_en = [] | 
					
						
						|  | wav = [] | 
					
						
						|  | st = [] | 
					
						
						|  |  | 
					
						
						|  | for bib in range(len(mel_input_length)): | 
					
						
						|  | mel_length = int(mel_input_length[bib].item() / 2) | 
					
						
						|  |  | 
					
						
						|  | random_start = np.random.randint(0, mel_length - mel_len) | 
					
						
						|  | en.append(asr[bib, :, random_start:random_start+mel_len]) | 
					
						
						|  | p_en.append(p[bib, :, random_start:random_start+mel_len]) | 
					
						
						|  | gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) | 
					
						
						|  |  | 
					
						
						|  | y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300] | 
					
						
						|  | wav.append(torch.from_numpy(y).to(device)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | random_start = np.random.randint(0, mel_length - mel_len_st) | 
					
						
						|  | st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)]) | 
					
						
						|  |  | 
					
						
						|  | wav = torch.stack(wav).float().detach() | 
					
						
						|  |  | 
					
						
						|  | en = torch.stack(en) | 
					
						
						|  | p_en = torch.stack(p_en) | 
					
						
						|  | gt = torch.stack(gt).detach() | 
					
						
						|  | st = torch.stack(st).detach() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if gt.size(-1) < 80: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | s = model.style_encoder(gt.unsqueeze(1)) | 
					
						
						|  | s_dur = model.predictor_encoder(gt.unsqueeze(1)) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) | 
					
						
						|  | F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze() | 
					
						
						|  |  | 
					
						
						|  | N_real = log_norm(gt.unsqueeze(1)).squeeze(1) | 
					
						
						|  |  | 
					
						
						|  | y_rec_gt = wav.unsqueeze(1) | 
					
						
						|  | y_rec_gt_pred = model.decoder(en, F0_real, N_real, s) | 
					
						
						|  |  | 
					
						
						|  | wav = y_rec_gt | 
					
						
						|  |  | 
					
						
						|  | F0_fake, N_fake = model.predictor(texts=p_en, style=s, f0=True) | 
					
						
						|  |  | 
					
						
						|  | y_rec = model.decoder(en, F0_fake, N_fake, s) | 
					
						
						|  |  | 
					
						
						|  | loss_F0_rec =  (F.smooth_l1_loss(F0_real, F0_fake)) / 10 | 
					
						
						|  | loss_norm_rec = F.smooth_l1_loss(N_real, N_fake) | 
					
						
						|  |  | 
					
						
						|  | optimizer.zero_grad() | 
					
						
						|  | d_loss = dl(wav.detach(), y_rec.detach()).mean() | 
					
						
						|  | accelerator.backward(d_loss) | 
					
						
						|  | optimizer.step('msd') | 
					
						
						|  | optimizer.step('mpd') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | optimizer.zero_grad() | 
					
						
						|  |  | 
					
						
						|  | loss_mel = stft_loss(y_rec, wav) | 
					
						
						|  | loss_gen_all = gl(wav, y_rec).mean() | 
					
						
						|  | loss_lm = wl(wav.detach().squeeze(), y_rec.squeeze()).mean() | 
					
						
						|  |  | 
					
						
						|  | loss_ce = 0 | 
					
						
						|  | loss_dur = 0 | 
					
						
						|  | for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths): | 
					
						
						|  | _s2s_pred = _s2s_pred[:_text_length, :] | 
					
						
						|  | _text_input = _text_input[:_text_length].long() | 
					
						
						|  | _s2s_trg = torch.zeros_like(_s2s_pred) | 
					
						
						|  | for p in range(_s2s_trg.shape[0]): | 
					
						
						|  | _s2s_trg[p, :_text_input[p]] = 1 | 
					
						
						|  | _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) | 
					
						
						|  |  | 
					
						
						|  | loss_dur += F.l1_loss(_dur_pred[1:_text_length-1], | 
					
						
						|  | _text_input[1:_text_length-1]) | 
					
						
						|  | loss_ce += F.binary_cross_entropy_with_logits(_s2s_pred.flatten(), _s2s_trg.flatten()) | 
					
						
						|  |  | 
					
						
						|  | loss_ce /= texts.size(0) | 
					
						
						|  | loss_dur /= texts.size(0) | 
					
						
						|  |  | 
					
						
						|  | loss_s2s = 0 | 
					
						
						|  | for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths): | 
					
						
						|  | loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length]) | 
					
						
						|  | loss_s2s /= texts.size(0) | 
					
						
						|  |  | 
					
						
						|  | loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10 | 
					
						
						|  |  | 
					
						
						|  | g_loss = loss_params.lambda_mel * loss_mel + \ | 
					
						
						|  | loss_params.lambda_F0 * loss_F0_rec + \ | 
					
						
						|  | loss_params.lambda_ce * loss_ce + \ | 
					
						
						|  | loss_params.lambda_norm * loss_norm_rec + \ | 
					
						
						|  | loss_params.lambda_dur * loss_dur + \ | 
					
						
						|  | loss_params.lambda_gen * loss_gen_all + \ | 
					
						
						|  | loss_params.lambda_slm * loss_lm + \ | 
					
						
						|  | loss_params.lambda_sty * loss_sty + \ | 
					
						
						|  | loss_params.lambda_diff * loss_diff + \ | 
					
						
						|  | loss_params.lambda_mono * loss_mono + \ | 
					
						
						|  | loss_params.lambda_s2s * loss_s2s | 
					
						
						|  |  | 
					
						
						|  | running_loss += accelerator.gather(loss_mel).mean().item() | 
					
						
						|  | accelerator.backward(g_loss) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | optimizer.step('bert_encoder') | 
					
						
						|  | optimizer.step('bert') | 
					
						
						|  | optimizer.step('predictor') | 
					
						
						|  | optimizer.step('predictor_encoder') | 
					
						
						|  | optimizer.step('style_encoder') | 
					
						
						|  | optimizer.step('decoder') | 
					
						
						|  |  | 
					
						
						|  | optimizer.step('text_encoder') | 
					
						
						|  | optimizer.step('text_aligner') | 
					
						
						|  |  | 
					
						
						|  | if epoch >= diff_epoch: | 
					
						
						|  | optimizer.step('diffusion') | 
					
						
						|  |  | 
					
						
						|  | d_loss_slm, loss_gen_lm = 0, 0 | 
					
						
						|  | if epoch >= joint_epoch: | 
					
						
						|  |  | 
					
						
						|  | if np.random.rand() < 0.5: | 
					
						
						|  | use_ind = True | 
					
						
						|  | else: | 
					
						
						|  | use_ind = False | 
					
						
						|  |  | 
					
						
						|  | if use_ind: | 
					
						
						|  | ref_lengths = input_lengths | 
					
						
						|  | ref_texts = texts | 
					
						
						|  |  | 
					
						
						|  | slm_out = slmadv(i, | 
					
						
						|  | y_rec_gt, | 
					
						
						|  | y_rec_gt_pred, | 
					
						
						|  | waves, | 
					
						
						|  | mel_input_length, | 
					
						
						|  | ref_texts, | 
					
						
						|  | ref_lengths, use_ind, s_trg.detach(), ref if multispeaker else None) | 
					
						
						|  |  | 
					
						
						|  | if slm_out is not None: | 
					
						
						|  | d_loss_slm, loss_gen_lm, y_pred = slm_out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | optimizer.zero_grad() | 
					
						
						|  | accelerator.backward(loss_gen_lm) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | total_norm = {} | 
					
						
						|  | for key in model.keys(): | 
					
						
						|  | total_norm[key] = 0 | 
					
						
						|  | parameters = [p for p in model[key].parameters() if p.grad is not None and p.requires_grad] | 
					
						
						|  | for p in parameters: | 
					
						
						|  | param_norm = p.grad.detach().data.norm(2) | 
					
						
						|  | total_norm[key] += param_norm.item() ** 2 | 
					
						
						|  | total_norm[key] = total_norm[key] ** 0.5 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if total_norm['predictor'] > slmadv_params.thresh: | 
					
						
						|  | for key in model.keys(): | 
					
						
						|  | for p in model[key].parameters(): | 
					
						
						|  | if p.grad is not None: | 
					
						
						|  | p.grad *= (1 / total_norm['predictor']) | 
					
						
						|  |  | 
					
						
						|  | for p in model.predictor.duration_proj.parameters(): | 
					
						
						|  | if p.grad is not None: | 
					
						
						|  | p.grad *= slmadv_params.scale | 
					
						
						|  |  | 
					
						
						|  | for p in model.predictor.lstm.parameters(): | 
					
						
						|  | if p.grad is not None: | 
					
						
						|  | p.grad *= slmadv_params.scale | 
					
						
						|  |  | 
					
						
						|  | for p in model.diffusion.parameters(): | 
					
						
						|  | if p.grad is not None: | 
					
						
						|  | p.grad *= slmadv_params.scale | 
					
						
						|  |  | 
					
						
						|  | optimizer.step('bert_encoder') | 
					
						
						|  | optimizer.step('bert') | 
					
						
						|  | optimizer.step('predictor') | 
					
						
						|  | optimizer.step('diffusion') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if d_loss_slm != 0: | 
					
						
						|  | optimizer.zero_grad() | 
					
						
						|  | accelerator.backward(d_loss_slm) | 
					
						
						|  | optimizer.step('wd') | 
					
						
						|  |  | 
					
						
						|  | iters = iters + 1 | 
					
						
						|  |  | 
					
						
						|  | if (i + 1) % log_interval == 0: | 
					
						
						|  | logger.info ('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f, SLoss: %.5f, S2S Loss: %.5f, Mono Loss: %.5f' | 
					
						
						|  | %(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, d_loss, loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff, d_loss_slm, loss_gen_lm, s_loss, loss_s2s, loss_mono), main_process_only=True) | 
					
						
						|  | if accelerator.is_main_process: | 
					
						
						|  | print ('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f, SLoss: %.5f, S2S Loss: %.5f, Mono Loss: %.5f' | 
					
						
						|  | %(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, d_loss, loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff, d_loss_slm, loss_gen_lm, s_loss, loss_s2s, loss_mono)) | 
					
						
						|  | accelerator.log({'train/mel_loss': float(running_loss / log_interval), | 
					
						
						|  | 'train/gen_loss': float(loss_gen_all), | 
					
						
						|  | 'train/d_loss': float(d_loss), | 
					
						
						|  | 'train/ce_loss': float(loss_ce), | 
					
						
						|  | 'train/dur_loss': float(loss_dur), | 
					
						
						|  | 'train/slm_loss': float(loss_lm), | 
					
						
						|  | 'train/norm_loss': float(loss_norm_rec), | 
					
						
						|  | 'train/F0_loss': float(loss_F0_rec), | 
					
						
						|  | 'train/sty_loss': float(loss_sty), | 
					
						
						|  | 'train/diff_loss': float(loss_diff), | 
					
						
						|  | 'train/d_loss_slm': float(d_loss_slm), | 
					
						
						|  | 'train/gen_loss_slm': float(loss_gen_lm), | 
					
						
						|  | 'epoch': int(epoch) + 1}, step=iters) | 
					
						
						|  |  | 
					
						
						|  | running_loss = 0 | 
					
						
						|  |  | 
					
						
						|  | accelerator.print('Time elasped:', time.time() - start_time) | 
					
						
						|  |  | 
					
						
						|  | loss_test = 0 | 
					
						
						|  | loss_align = 0 | 
					
						
						|  | loss_f = 0 | 
					
						
						|  | _ = [model[key].eval() for key in model] | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | iters_test = 0 | 
					
						
						|  | for batch_idx, batch in enumerate(val_dataloader): | 
					
						
						|  | optimizer.zero_grad() | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | waves = batch[0] | 
					
						
						|  | batch = [b.to(device) for b in batch[1:]] | 
					
						
						|  | texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda') | 
					
						
						|  | text_mask = length_to_mask(input_lengths).to(texts.device) | 
					
						
						|  |  | 
					
						
						|  | _, _, s2s_attn = model.text_aligner(mels, mask, texts) | 
					
						
						|  | s2s_attn = s2s_attn.transpose(-1, -2) | 
					
						
						|  | s2s_attn = s2s_attn[..., 1:] | 
					
						
						|  | s2s_attn = s2s_attn.transpose(-1, -2) | 
					
						
						|  |  | 
					
						
						|  | mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down)) | 
					
						
						|  | s2s_attn_mono = maximum_path(s2s_attn, mask_ST) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t_en = model.text_encoder(texts, input_lengths, text_mask) | 
					
						
						|  | asr = (t_en @ s2s_attn_mono) | 
					
						
						|  |  | 
					
						
						|  | d_gt = s2s_attn_mono.sum(axis=-1).detach() | 
					
						
						|  |  | 
					
						
						|  | ss = [] | 
					
						
						|  | gs = [] | 
					
						
						|  |  | 
					
						
						|  | for bib in range(len(mel_input_length)): | 
					
						
						|  | mel_length = int(mel_input_length[bib].item()) | 
					
						
						|  | mel = mels[bib, :, :mel_input_length[bib]] | 
					
						
						|  | s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1)) | 
					
						
						|  | ss.append(s) | 
					
						
						|  | s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) | 
					
						
						|  | gs.append(s) | 
					
						
						|  |  | 
					
						
						|  | s = torch.stack(ss).squeeze() | 
					
						
						|  | gs = torch.stack(gs).squeeze() | 
					
						
						|  | s_trg = torch.cat([s, gs], dim=-1).detach() | 
					
						
						|  |  | 
					
						
						|  | bert_dur = model.bert(texts, attention_mask=(~text_mask).int()) | 
					
						
						|  | d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | 
					
						
						|  | d, p = model.predictor(d_en, s, | 
					
						
						|  | input_lengths, | 
					
						
						|  | s2s_attn_mono, | 
					
						
						|  | text_mask) | 
					
						
						|  |  | 
					
						
						|  | mel_len = int(mel_input_length.min().item() / 2 - 1) | 
					
						
						|  | en = [] | 
					
						
						|  | gt = [] | 
					
						
						|  |  | 
					
						
						|  | p_en = [] | 
					
						
						|  | wav = [] | 
					
						
						|  |  | 
					
						
						|  | for bib in range(len(mel_input_length)): | 
					
						
						|  | mel_length = int(mel_input_length[bib].item() / 2) | 
					
						
						|  |  | 
					
						
						|  | random_start = np.random.randint(0, mel_length - mel_len) | 
					
						
						|  | en.append(asr[bib, :, random_start:random_start+mel_len]) | 
					
						
						|  | p_en.append(p[bib, :, random_start:random_start+mel_len]) | 
					
						
						|  |  | 
					
						
						|  | gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) | 
					
						
						|  | y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300] | 
					
						
						|  | wav.append(torch.from_numpy(y).to(device)) | 
					
						
						|  |  | 
					
						
						|  | wav = torch.stack(wav).float().detach() | 
					
						
						|  |  | 
					
						
						|  | en = torch.stack(en) | 
					
						
						|  | p_en = torch.stack(p_en) | 
					
						
						|  | gt = torch.stack(gt).detach() | 
					
						
						|  | s = model.predictor_encoder(gt.unsqueeze(1)) | 
					
						
						|  |  | 
					
						
						|  | F0_fake, N_fake = model.predictor(texts=p_en, style=s, f0=True) | 
					
						
						|  |  | 
					
						
						|  | loss_dur = 0 | 
					
						
						|  | for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths): | 
					
						
						|  | _s2s_pred = _s2s_pred[:_text_length, :] | 
					
						
						|  | _text_input = _text_input[:_text_length].long() | 
					
						
						|  | _s2s_trg = torch.zeros_like(_s2s_pred) | 
					
						
						|  | for bib in range(_s2s_trg.shape[0]): | 
					
						
						|  | _s2s_trg[bib, :_text_input[bib]] = 1 | 
					
						
						|  | _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) | 
					
						
						|  | loss_dur += F.l1_loss(_dur_pred[1:_text_length-1], | 
					
						
						|  | _text_input[1:_text_length-1]) | 
					
						
						|  |  | 
					
						
						|  | loss_dur /= texts.size(0) | 
					
						
						|  |  | 
					
						
						|  | s = model.style_encoder(gt.unsqueeze(1)) | 
					
						
						|  |  | 
					
						
						|  | y_rec = model.decoder(en, F0_fake, N_fake, s) | 
					
						
						|  | loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) | 
					
						
						|  |  | 
					
						
						|  | F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) | 
					
						
						|  |  | 
					
						
						|  | loss_F0 = F.l1_loss(F0_real, F0_fake) / 10 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | loss_test += (loss_mel).mean() | 
					
						
						|  | loss_align += (loss_dur).mean() | 
					
						
						|  | loss_f += (loss_F0).mean() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | iters_test += 1 | 
					
						
						|  | except: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | accelerator.print('Epochs:', epoch + 1) | 
					
						
						|  | accelerator.print('iters test:', iters_test) | 
					
						
						|  | try: | 
					
						
						|  | logger.info('Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f' % ( | 
					
						
						|  | loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) + '\n', main_process_only=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accelerator.log({'eval/mel_loss': float(loss_test / iters_test), | 
					
						
						|  | 'eval/dur_loss': float(loss_test / iters_test), | 
					
						
						|  | 'eval/F0_loss': float(loss_f / iters_test)}, | 
					
						
						|  | step=(i + 1) * (epoch + 1)) | 
					
						
						|  | except ZeroDivisionError: | 
					
						
						|  | accelerator.print("Eval loss was divided by zero... skipping eval cycle") | 
					
						
						|  |  | 
					
						
						|  | if epoch % saving_epoch == 0: | 
					
						
						|  | if (loss_test / iters_test) < best_loss: | 
					
						
						|  | best_loss = loss_test / iters_test | 
					
						
						|  | try: | 
					
						
						|  | accelerator.print('Saving..') | 
					
						
						|  | state = { | 
					
						
						|  | 'net': {key: model[key].state_dict() for key in model}, | 
					
						
						|  | 'optimizer': optimizer.state_dict(), | 
					
						
						|  | 'iters': iters, | 
					
						
						|  | 'val_loss': loss_test / iters_test, | 
					
						
						|  | 'epoch': epoch, | 
					
						
						|  | } | 
					
						
						|  | except ZeroDivisionError: | 
					
						
						|  | accelerator.print('No iter test, Re-Saving..') | 
					
						
						|  | state = { | 
					
						
						|  | 'net': {key: model[key].state_dict() for key in model}, | 
					
						
						|  | 'optimizer': optimizer.state_dict(), | 
					
						
						|  | 'iters': iters, | 
					
						
						|  | 'val_loss': 0.1, | 
					
						
						|  | 'epoch': epoch, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if accelerator.is_main_process: | 
					
						
						|  | save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch) | 
					
						
						|  | torch.save(state, save_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if model_params.diffusion.dist.estimate_sigma_data: | 
					
						
						|  | config['model_params']['diffusion']['dist']['sigma_data'] = float(np.mean(running_std)) | 
					
						
						|  |  | 
					
						
						|  | with open(osp.join(log_dir, osp.basename(config_path)), 'w') as outfile: | 
					
						
						|  | yaml.dump(config, outfile, default_flow_style=True) | 
					
						
						|  | if accelerator.is_main_process: | 
					
						
						|  | print('Saving last pth..') | 
					
						
						|  | state = { | 
					
						
						|  | 'net':  {key: model[key].state_dict() for key in model}, | 
					
						
						|  | 'optimizer': optimizer.state_dict(), | 
					
						
						|  | 'iters': iters, | 
					
						
						|  | 'val_loss': loss_test / iters_test, | 
					
						
						|  | 'epoch': epoch, | 
					
						
						|  | } | 
					
						
						|  | save_path = osp.join(log_dir, '2nd_phase_last.pth') | 
					
						
						|  | torch.save(state, save_path) | 
					
						
						|  |  | 
					
						
						|  | accelerator.end_training() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |