Update README.md
Browse files
README.md
CHANGED
|
@@ -42,9 +42,45 @@ However, this model can be used to interpret and analyse historical textual mate
|
|
| 42 |
|
| 43 |
## Model Dscription
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
## Acknowledgements
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
|
| 50 |
|
|
|
|
| 42 |
|
| 43 |
## Model Dscription
|
| 44 |
|
| 45 |
+
The following hyperparameters were used during training:
|
| 46 |
+
- learning_rate: 3e-05
|
| 47 |
+
- train_batch_size: 8
|
| 48 |
+
- eval_batch_size: 8
|
| 49 |
+
- seed: 42
|
| 50 |
+
- gradient_accumulation_steps: 0
|
| 51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 52 |
+
- lr_scheduler_type: linear
|
| 53 |
+
- num_epochs: 6
|
| 54 |
+
- fp16: False
|
| 55 |
+
|
| 56 |
+
Dataset:
|
| 57 |
+
- Khubist2, which has been cleaned and chunked
|
| 58 |
+
|
| 59 |
+
## Intended uses & limitations
|
| 60 |
+
This model should primarly be used to fine-tune further on and downstream tasks.
|
| 61 |
+
|
| 62 |
+
Inference for fill-mask with Huggingface Transformers in python:
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
from transformers import pipeline
|
| 66 |
+
|
| 67 |
+
summarizer = pipeline("fill-mask", model="Riksarkivet/bert-base-cased-swe-1800")
|
| 68 |
+
historical_text = """Det vore [MASK] häller nödvändigt att bita af tungan än berättat hvad jag varit med om."""
|
| 69 |
+
print(summarizer(historical_text))
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
|
| 75 |
|
| 76 |
## Acknowledgements
|
| 77 |
+
We gratefully acknowledge EuroHPC (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si)
|
| 78 |
+
and Språkbanken (Swe-Clarin) for the datasets.
|
| 79 |
+
|
| 80 |
+
## Citation Information
|
| 81 |
+
|
| 82 |
+
Eva Pettersson and Lars Borin (2022)
|
| 83 |
+
Swedish Diachronic Corpus
|
| 84 |
+
In Darja Fišer & Andreas Witt (eds.), CLARIN. The Infrastructure for Language Resources. Berlin: deGruyter. https://degruyter.com/document/doi/10.1515/9783110767377-022/html
|
| 85 |
|
|
|
|
| 86 |
|