Update app.py
Browse files
app.py
CHANGED
|
@@ -4,12 +4,18 @@ import re
|
|
| 4 |
import pandas as pd
|
| 5 |
import plotly.express as px
|
| 6 |
import plotly.graph_objects as go
|
| 7 |
-
from plotly.subplots import make_subplots
|
| 8 |
import numpy as np
|
| 9 |
from datetime import datetime, timedelta
|
| 10 |
import sqlite3
|
| 11 |
import hashlib
|
| 12 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
from http.server import HTTPServer, SimpleHTTPRequestHandler
|
| 14 |
|
| 15 |
# Advanced ML and NLP imports
|
|
@@ -26,7 +32,7 @@ except ImportError as e:
|
|
| 26 |
|
| 27 |
# Configuration
|
| 28 |
st.set_page_config(
|
| 29 |
-
page_title='
|
| 30 |
page_icon='๐ฆ',
|
| 31 |
layout='wide',
|
| 32 |
initial_sidebar_state='expanded'
|
|
@@ -39,10 +45,11 @@ if 'transactions_df' not in st.session_state:
|
|
| 39 |
st.session_state.transactions_df = None
|
| 40 |
if 'analysis_complete' not in st.session_state:
|
| 41 |
st.session_state.analysis_complete = False
|
|
|
|
|
|
|
| 42 |
|
| 43 |
class DatabaseManager:
|
| 44 |
"""Handles all database operations for user profiles and financial data"""
|
| 45 |
-
|
| 46 |
def __init__(self):
|
| 47 |
self.db_path = 'financial_analysis.db'
|
| 48 |
self.init_database()
|
|
@@ -89,6 +96,7 @@ class DatabaseManager:
|
|
| 89 |
CREATE TABLE IF NOT EXISTS financial_data (
|
| 90 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 91 |
user_id TEXT NOT NULL,
|
|
|
|
| 92 |
date TEXT NOT NULL,
|
| 93 |
description TEXT,
|
| 94 |
amount REAL,
|
|
@@ -104,6 +112,7 @@ class DatabaseManager:
|
|
| 104 |
CREATE TABLE IF NOT EXISTS recommendations (
|
| 105 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 106 |
user_id TEXT NOT NULL,
|
|
|
|
| 107 |
recommendation_type TEXT,
|
| 108 |
title TEXT,
|
| 109 |
description TEXT,
|
|
@@ -158,13 +167,13 @@ class DatabaseManager:
|
|
| 158 |
conn.close()
|
| 159 |
|
| 160 |
if result:
|
| 161 |
-
columns = ['id', 'user_id', 'name', 'email', 'password_hash', 'financial_goals',
|
|
|
|
| 162 |
return dict(zip(columns, result))
|
| 163 |
return None
|
| 164 |
|
| 165 |
class PersonalizationEngine:
|
| 166 |
"""Advanced personalization and recommendation system"""
|
| 167 |
-
|
| 168 |
def __init__(self, user_profile=None):
|
| 169 |
self.user_profile = user_profile
|
| 170 |
self.scaler = StandardScaler()
|
|
@@ -293,7 +302,6 @@ class PersonalizationEngine:
|
|
| 293 |
|
| 294 |
class AdvancedAnalytics:
|
| 295 |
"""Advanced analytics and ML models for financial analysis"""
|
| 296 |
-
|
| 297 |
def __init__(self):
|
| 298 |
self.models = {}
|
| 299 |
self.scaler = StandardScaler()
|
|
@@ -347,85 +355,153 @@ class AdvancedAnalytics:
|
|
| 347 |
'Predicted_Amount': future_predictions
|
| 348 |
})
|
| 349 |
|
| 350 |
-
def enhanced_loan_prediction(self, df):
|
| 351 |
-
"""Enhanced loan eligibility prediction
|
| 352 |
try:
|
| 353 |
# Load training data
|
| 354 |
-
training_data = pd.read_csv('
|
| 355 |
|
| 356 |
-
# Prepare features
|
| 357 |
total_credits = df[df['Amount'] > 0]['Amount'].sum()
|
| 358 |
total_debits = abs(df[df['Amount'] < 0]['Amount'].sum())
|
| 359 |
num_transactions = len(df)
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
avg_transaction_amount = df['Amount'].mean()
|
| 363 |
-
transaction_variability = df['Amount'].std()
|
| 364 |
-
balance_trend = df['Balance'].iloc[-1] - df['Balance'].iloc[0] if len(df) > 1 else 0
|
| 365 |
-
|
| 366 |
-
# Additional features
|
| 367 |
-
credit_frequency = len(df[df['Amount'] > 0]) / max(1, len(df))
|
| 368 |
-
max_single_debit = abs(df[df['Amount'] < 0]['Amount'].min()) if len(df[df['Amount'] < 0]) > 0 else 0
|
| 369 |
-
balance_volatility = df['Balance'].std()
|
| 370 |
|
| 371 |
# Prepare feature vector
|
| 372 |
features = pd.DataFrame({
|
| 373 |
-
'
|
| 374 |
-
'
|
| 375 |
-
'
|
| 376 |
-
'
|
| 377 |
-
'
|
| 378 |
-
'balance_trend': [balance_trend],
|
| 379 |
-
'credit_frequency': [credit_frequency],
|
| 380 |
-
'max_single_debit': [max_single_debit],
|
| 381 |
-
'balance_volatility': [balance_volatility]
|
| 382 |
})
|
| 383 |
|
| 384 |
-
#
|
| 385 |
-
if
|
| 386 |
-
|
| 387 |
-
'avg_transaction_amount', 'transaction_variability', 'balance_trend']]
|
| 388 |
-
y_train = training_data['Eligibility (y)']
|
| 389 |
-
|
| 390 |
-
# Add missing features with defaults
|
| 391 |
-
for col in features.columns:
|
| 392 |
-
if col not in X_train.columns:
|
| 393 |
-
X_train[col] = 0
|
| 394 |
|
| 395 |
-
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
-
|
| 399 |
-
|
| 400 |
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
else:
|
| 407 |
-
# Fallback to Random Forest
|
| 408 |
-
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
| 409 |
-
X_train = training_data[['total_credits', 'total_debits', 'num_transactions',
|
| 410 |
-
'avg_transaction_amount', 'transaction_variability', 'balance_trend']]
|
| 411 |
-
y_train = training_data['Eligibility (y)']
|
| 412 |
-
model.fit(X_train, y_train)
|
| 413 |
-
|
| 414 |
-
features_basic = features[['total_credits', 'total_debits', 'num_transactions',
|
| 415 |
-
'avg_transaction_amount', 'transaction_variability', 'balance_trend']]
|
| 416 |
-
prediction = model.predict(features_basic)[0]
|
| 417 |
-
prediction_proba = model.predict_proba(features_basic)[0]
|
| 418 |
-
|
| 419 |
-
return {
|
| 420 |
-
'eligible': bool(prediction),
|
| 421 |
-
'confidence': float(max(prediction_proba)),
|
| 422 |
-
'model_type': 'Random Forest'
|
| 423 |
-
}
|
| 424 |
|
| 425 |
except Exception as e:
|
| 426 |
st.error(f"Error in loan prediction: {str(e)}")
|
| 427 |
return {'eligible': False, 'confidence': 0.0, 'model_type': 'Error'}
|
| 428 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
def parse_pdf_enhanced(file):
|
| 430 |
"""Enhanced PDF parsing with better text extraction"""
|
| 431 |
try:
|
|
@@ -434,36 +510,132 @@ def parse_pdf_enhanced(file):
|
|
| 434 |
for page in pdf.pages:
|
| 435 |
page_text = page.extract_text()
|
| 436 |
if page_text:
|
| 437 |
-
text += page_text
|
| 438 |
return text
|
| 439 |
except Exception as e:
|
| 440 |
st.error(f"Error parsing PDF: {str(e)}")
|
| 441 |
return ""
|
| 442 |
|
| 443 |
-
def process_text_to_df_enhanced(text):
|
| 444 |
-
"""
|
| 445 |
transactions = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
|
| 447 |
-
|
| 448 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
|
| 468 |
if not transactions:
|
| 469 |
return pd.DataFrame(columns=['Date', 'Description', 'Amount', 'Balance'])
|
|
@@ -471,15 +643,16 @@ def process_text_to_df_enhanced(text):
|
|
| 471 |
df = pd.DataFrame(transactions, columns=['Date', 'Description', 'Amount', 'Balance'])
|
| 472 |
df['Date'] = pd.to_datetime(df['Date'])
|
| 473 |
df = df.sort_values('Date').reset_index(drop=True)
|
|
|
|
| 474 |
|
| 475 |
return df
|
| 476 |
|
| 477 |
-
def categorize_expense_enhanced(description):
|
| 478 |
-
"""Enhanced expense categorization
|
| 479 |
description_lower = description.lower()
|
| 480 |
|
| 481 |
-
#
|
| 482 |
-
|
| 483 |
'Salary/Income': ['salary', 'wage', 'income', 'payroll', 'refund'],
|
| 484 |
'Groceries': ['grocery', 'supermarket', 'food', 'spar', 'checkers', 'woolworths'],
|
| 485 |
'Transport': ['fuel', 'petrol', 'uber', 'taxi', 'transport', 'car payment'],
|
|
@@ -489,16 +662,36 @@ def categorize_expense_enhanced(description):
|
|
| 489 |
'Shopping': ['retail', 'clothing', 'amazon', 'takealot', 'mall'],
|
| 490 |
'Investments': ['investment', 'shares', 'unit trust', 'retirement'],
|
| 491 |
'Insurance': ['insurance', 'medical aid', 'life cover', 'short term'],
|
| 492 |
-
'
|
| 493 |
-
'
|
| 494 |
-
'Credits': ['acb credit', 'immediate trf cr', 'credit'],
|
| 495 |
-
'Bank Charges': ['fees', 'charge', 'commission'],
|
| 496 |
-
'Cash Transactions': ['atm', 'cash deposit', 'withdrawal'],
|
| 497 |
'Cellular': ['airtime', 'data', 'vodacom', 'mtn', 'cell c'],
|
| 498 |
'Interest': ['interest'],
|
| 499 |
'Failed Transactions': ['unsuccessful', 'declined', 'failed']
|
| 500 |
}
|
| 501 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
# Check for specific keywords
|
| 503 |
for category, keywords in category_keywords.items():
|
| 504 |
if any(keyword in description_lower for keyword in keywords):
|
|
@@ -513,11 +706,10 @@ def categorize_expense_enhanced(description):
|
|
| 513 |
except:
|
| 514 |
pass
|
| 515 |
|
| 516 |
-
return '
|
| 517 |
|
| 518 |
def create_advanced_visualizations(df, patterns, recommendations):
|
| 519 |
"""Create advanced interactive visualizations"""
|
| 520 |
-
|
| 521 |
# 1. Financial Health Dashboard
|
| 522 |
col1, col2, col3, col4 = st.columns(4)
|
| 523 |
|
|
@@ -589,13 +781,12 @@ def create_advanced_visualizations(df, patterns, recommendations):
|
|
| 589 |
|
| 590 |
def main():
|
| 591 |
"""Main application function"""
|
| 592 |
-
|
| 593 |
# Initialize database
|
| 594 |
db = DatabaseManager()
|
| 595 |
|
| 596 |
# Sidebar for user authentication
|
| 597 |
with st.sidebar:
|
| 598 |
-
st.title("๐ฆ
|
| 599 |
|
| 600 |
if st.session_state.user_profile is None:
|
| 601 |
tab1, tab2 = st.tabs(["Login", "Sign Up"])
|
|
@@ -641,14 +832,22 @@ def main():
|
|
| 641 |
st.session_state.user_profile = None
|
| 642 |
st.session_state.transactions_df = None
|
| 643 |
st.session_state.analysis_complete = False
|
|
|
|
| 644 |
st.experimental_rerun()
|
| 645 |
|
| 646 |
# Main content area
|
| 647 |
if st.session_state.user_profile is None:
|
| 648 |
st.markdown("""
|
| 649 |
-
# ๐ฆ
|
|
|
|
|
|
|
| 650 |
|
| 651 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
|
| 653 |
**Key Features:**
|
| 654 |
- ๐ค **AI-Powered Insights**: Advanced machine learning for personalized recommendations
|
|
@@ -657,29 +856,42 @@ def main():
|
|
| 657 |
- ๐ฎ **Predictive Analysis**: Forecast future spending trends
|
| 658 |
- ๐ก๏ธ **Anomaly Detection**: Identify unusual transactions
|
| 659 |
- ๐ก **Smart Recommendations**: Personalized financial advice
|
|
|
|
| 660 |
|
| 661 |
**Please login or create an account to get started.**
|
| 662 |
""")
|
| 663 |
-
|
| 664 |
return
|
| 665 |
|
| 666 |
# Main analysis interface
|
| 667 |
-
st.title(f"๐ฆ
|
| 668 |
|
| 669 |
# File upload section
|
| 670 |
st.markdown("### ๐ Upload Your Bank Statement")
|
| 671 |
uploaded_file = st.file_uploader(
|
| 672 |
"Choose a PDF bank statement",
|
| 673 |
type="pdf",
|
| 674 |
-
help="Upload your
|
| 675 |
)
|
| 676 |
|
| 677 |
if uploaded_file is not None:
|
| 678 |
try:
|
| 679 |
-
# Parse PDF
|
| 680 |
-
with st.spinner("๐
|
| 681 |
-
text =
|
| 682 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 683 |
|
| 684 |
if df.empty:
|
| 685 |
st.warning("โ ๏ธ No transactions found in the uploaded statement. Please check the file format.")
|
|
@@ -689,7 +901,7 @@ def main():
|
|
| 689 |
st.session_state.transactions_df = df
|
| 690 |
|
| 691 |
# Enhance data with categories
|
| 692 |
-
df['Category'] = df['Description'].apply(categorize_expense_enhanced)
|
| 693 |
|
| 694 |
# Initialize analytics engines
|
| 695 |
personalization = PersonalizationEngine(st.session_state.user_profile)
|
|
@@ -700,11 +912,22 @@ def main():
|
|
| 700 |
patterns = personalization.analyze_spending_patterns(df)
|
| 701 |
recommendations = personalization.generate_personalized_recommendations(df, patterns)
|
| 702 |
health_score, score_components = personalization.calculate_financial_health_score(df, patterns)
|
| 703 |
-
loan_prediction = analytics.enhanced_loan_prediction(df)
|
| 704 |
df_with_anomalies = analytics.detect_anomalies(df)
|
| 705 |
|
| 706 |
st.session_state.analysis_complete = True
|
| 707 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 708 |
# Display results in tabs
|
| 709 |
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
|
| 710 |
"๐ Overview", "๐ก Recommendations", "๐ฅ Health Score",
|
|
@@ -902,7 +1125,7 @@ def main():
|
|
| 902 |
|
| 903 |
except Exception as e:
|
| 904 |
st.error(f"โ An error occurred while processing your statement: {str(e)}")
|
| 905 |
-
st.info("Please ensure your PDF is a valid
|
| 906 |
|
| 907 |
if __name__ == "__main__":
|
| 908 |
main()
|
|
@@ -944,4 +1167,4 @@ st.markdown("""
|
|
| 944 |
color: white;
|
| 945 |
}
|
| 946 |
</style>
|
| 947 |
-
""", unsafe_allow_html=True)
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
import plotly.express as px
|
| 6 |
import plotly.graph_objects as go
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
from datetime import datetime, timedelta
|
| 9 |
import sqlite3
|
| 10 |
import hashlib
|
| 11 |
+
import tempfile
|
| 12 |
+
import PyPDF2
|
| 13 |
+
import os
|
| 14 |
+
import webbrowser
|
| 15 |
+
import threading
|
| 16 |
+
import uuid
|
| 17 |
+
import subprocess
|
| 18 |
+
import time
|
| 19 |
from http.server import HTTPServer, SimpleHTTPRequestHandler
|
| 20 |
|
| 21 |
# Advanced ML and NLP imports
|
|
|
|
| 32 |
|
| 33 |
# Configuration
|
| 34 |
st.set_page_config(
|
| 35 |
+
page_title='Universal Bank Statement Analyzer',
|
| 36 |
page_icon='๐ฆ',
|
| 37 |
layout='wide',
|
| 38 |
initial_sidebar_state='expanded'
|
|
|
|
| 45 |
st.session_state.transactions_df = None
|
| 46 |
if 'analysis_complete' not in st.session_state:
|
| 47 |
st.session_state.analysis_complete = False
|
| 48 |
+
if 'detected_bank' not in st.session_state:
|
| 49 |
+
st.session_state.detected_bank = None
|
| 50 |
|
| 51 |
class DatabaseManager:
|
| 52 |
"""Handles all database operations for user profiles and financial data"""
|
|
|
|
| 53 |
def __init__(self):
|
| 54 |
self.db_path = 'financial_analysis.db'
|
| 55 |
self.init_database()
|
|
|
|
| 96 |
CREATE TABLE IF NOT EXISTS financial_data (
|
| 97 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 98 |
user_id TEXT NOT NULL,
|
| 99 |
+
bank_name TEXT,
|
| 100 |
date TEXT NOT NULL,
|
| 101 |
description TEXT,
|
| 102 |
amount REAL,
|
|
|
|
| 112 |
CREATE TABLE IF NOT EXISTS recommendations (
|
| 113 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 114 |
user_id TEXT NOT NULL,
|
| 115 |
+
bank_name TEXT,
|
| 116 |
recommendation_type TEXT,
|
| 117 |
title TEXT,
|
| 118 |
description TEXT,
|
|
|
|
| 167 |
conn.close()
|
| 168 |
|
| 169 |
if result:
|
| 170 |
+
columns = ['id', 'user_id', 'name', 'email', 'password_hash', 'financial_goals',
|
| 171 |
+
'risk_tolerance', 'monthly_income', 'created_at']
|
| 172 |
return dict(zip(columns, result))
|
| 173 |
return None
|
| 174 |
|
| 175 |
class PersonalizationEngine:
|
| 176 |
"""Advanced personalization and recommendation system"""
|
|
|
|
| 177 |
def __init__(self, user_profile=None):
|
| 178 |
self.user_profile = user_profile
|
| 179 |
self.scaler = StandardScaler()
|
|
|
|
| 302 |
|
| 303 |
class AdvancedAnalytics:
|
| 304 |
"""Advanced analytics and ML models for financial analysis"""
|
|
|
|
| 305 |
def __init__(self):
|
| 306 |
self.models = {}
|
| 307 |
self.scaler = StandardScaler()
|
|
|
|
| 355 |
'Predicted_Amount': future_predictions
|
| 356 |
})
|
| 357 |
|
| 358 |
+
def enhanced_loan_prediction(self, df, bank_name):
|
| 359 |
+
"""Enhanced loan eligibility prediction"""
|
| 360 |
try:
|
| 361 |
# Load training data
|
| 362 |
+
training_data = pd.read_csv(f'{bank_name.lower().replace(" ", "_")}.csv')
|
| 363 |
|
| 364 |
+
# Prepare features from the transaction data
|
| 365 |
total_credits = df[df['Amount'] > 0]['Amount'].sum()
|
| 366 |
total_debits = abs(df[df['Amount'] < 0]['Amount'].sum())
|
| 367 |
num_transactions = len(df)
|
| 368 |
+
avg_balance = df['Balance'].mean()
|
| 369 |
+
closing_balance = df['Balance'].iloc[-1] if len(df) > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
# Prepare feature vector
|
| 372 |
features = pd.DataFrame({
|
| 373 |
+
'Total_Credits': [total_credits],
|
| 374 |
+
'Total_Debits': [total_debits],
|
| 375 |
+
'Average_Balance': [avg_balance],
|
| 376 |
+
'Num_Transactions': [num_transactions],
|
| 377 |
+
'Closing_Balance': [closing_balance]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
})
|
| 379 |
|
| 380 |
+
# Ensure we only use columns that exist in training data
|
| 381 |
+
available_columns = [col for col in features.columns if col in training_data.columns]
|
| 382 |
+
features = features[available_columns]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
+
# Train model
|
| 385 |
+
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
| 386 |
+
X_train = training_data[available_columns]
|
| 387 |
+
y_train = training_data['Eligibility']
|
| 388 |
+
model.fit(X_train, y_train)
|
| 389 |
|
| 390 |
+
prediction = model.predict(features)[0]
|
| 391 |
+
prediction_proba = model.predict_proba(features)[0]
|
| 392 |
|
| 393 |
+
return {
|
| 394 |
+
'eligible': bool(prediction),
|
| 395 |
+
'confidence': float(max(prediction_proba)),
|
| 396 |
+
'model_type': 'Random Forest'
|
| 397 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
except Exception as e:
|
| 400 |
st.error(f"Error in loan prediction: {str(e)}")
|
| 401 |
return {'eligible': False, 'confidence': 0.0, 'model_type': 'Error'}
|
| 402 |
|
| 403 |
+
def extract_text_from_pdf(file):
|
| 404 |
+
"""Extract text from PDF file"""
|
| 405 |
+
try:
|
| 406 |
+
if isinstance(file, str):
|
| 407 |
+
with open(file, 'rb') as f:
|
| 408 |
+
reader = PyPDF2.PdfReader(f)
|
| 409 |
+
text = ''
|
| 410 |
+
for page in reader.pages:
|
| 411 |
+
text += page.extract_text()
|
| 412 |
+
else:
|
| 413 |
+
reader = PyPDF2.PdfReader(file)
|
| 414 |
+
text = ''
|
| 415 |
+
for page in reader.pages:
|
| 416 |
+
text += page.extract_text()
|
| 417 |
+
return text
|
| 418 |
+
except Exception as e:
|
| 419 |
+
st.error(f"Error extracting text from PDF: {str(e)}")
|
| 420 |
+
return ""
|
| 421 |
+
|
| 422 |
+
def identify_bank_from_text(text):
|
| 423 |
+
"""Identify bank from statement text"""
|
| 424 |
+
text_lower = text.lower()
|
| 425 |
+
bank_keywords = {
|
| 426 |
+
'FNB': ['fnb', 'first national bank'],
|
| 427 |
+
'Standard Bank': ['standard bank'],
|
| 428 |
+
'Nedbank': ['nedbank'],
|
| 429 |
+
'ABSA': ['absa'],
|
| 430 |
+
'Capitec Bank': ['capitec']
|
| 431 |
+
}
|
| 432 |
+
|
| 433 |
+
for bank, keywords in bank_keywords.items():
|
| 434 |
+
if any(keyword in text_lower for keyword in keywords):
|
| 435 |
+
return bank
|
| 436 |
+
return None
|
| 437 |
+
|
| 438 |
+
def extract_bank_statement_metadata(text, bank_name):
|
| 439 |
+
"""Extract metadata from bank statement based on bank"""
|
| 440 |
+
if bank_name == 'FNB':
|
| 441 |
+
# Extract account holder name
|
| 442 |
+
name_match = re.search(r"(MR|MRS)\s+([A-Z\s]+)", text)
|
| 443 |
+
account_holder_name = name_match.group(0) if name_match else "Name not found"
|
| 444 |
+
|
| 445 |
+
# Extract closing balance
|
| 446 |
+
closing_balance_match = re.search(r"Closing Balance\s+([\d,]+\.?\d*)", text)
|
| 447 |
+
closing_balance = float(closing_balance_match.group(1).replace(',', '')) if closing_balance_match else 0.0
|
| 448 |
+
|
| 449 |
+
return account_holder_name, closing_balance
|
| 450 |
+
|
| 451 |
+
elif bank_name == 'Standard Bank':
|
| 452 |
+
name_match = re.search(r"Account Holder:\s*(.+?)\n", text)
|
| 453 |
+
account_holder_name = name_match.group(1).strip() if name_match else "Name not found"
|
| 454 |
+
|
| 455 |
+
acc_match = re.search(r"Account Number:\s*(\d+)", text)
|
| 456 |
+
account_number = acc_match.group(1) if acc_match else "Not found"
|
| 457 |
+
|
| 458 |
+
period_match = re.search(r"Statement Period:\s*(.+?)\n", text)
|
| 459 |
+
statement_period = period_match.group(1).strip() if period_match else "Not specified"
|
| 460 |
+
|
| 461 |
+
balance_match = re.search(r"Closing Balance:\s*(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)", text)
|
| 462 |
+
closing_balance = float(balance_match.group(1).replace(',', '').replace('R', '')) if balance_match else 0.0
|
| 463 |
+
|
| 464 |
+
return account_holder_name, account_number, statement_period, closing_balance
|
| 465 |
+
|
| 466 |
+
elif bank_name == 'Nedbank':
|
| 467 |
+
name_match = re.search(r"Account Holder:\s*(.+?)\n", text)
|
| 468 |
+
account_holder_name = name_match.group(1).strip() if name_match else "Name not found"
|
| 469 |
+
|
| 470 |
+
acc_match = re.search(r"Account Number:\s*(\d+)", text)
|
| 471 |
+
account_number = acc_match.group(1) if acc_match else "Not found"
|
| 472 |
+
|
| 473 |
+
period_match = re.search(r"Statement Period:\s*(.+?)\n", text)
|
| 474 |
+
statement_period = period_match.group(1).strip() if period_match else "Not specified"
|
| 475 |
+
|
| 476 |
+
balance_match = re.search(r"Closing Balance:\s*(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)", text)
|
| 477 |
+
closing_balance = float(balance_match.group(1).replace(',', '').replace('R', '')) if balance_match else 0.0
|
| 478 |
+
|
| 479 |
+
return account_holder_name, account_number, statement_period, closing_balance
|
| 480 |
+
|
| 481 |
+
elif bank_name == 'ABSA':
|
| 482 |
+
name_match = re.search(r"Account Holder:\s*(.+?)\n", text)
|
| 483 |
+
account_holder_name = name_match.group(1).strip() if name_match else "Name not found"
|
| 484 |
+
|
| 485 |
+
acc_match = re.search(r"Account Number:\s*(\d+)", text)
|
| 486 |
+
account_number = acc_match.group(1) if acc_match else "Not found"
|
| 487 |
+
|
| 488 |
+
period_match = re.search(r"Statement Period:\s*(.+?)\n", text)
|
| 489 |
+
statement_period = period_match.group(1).strip() if period_match else "Not specified"
|
| 490 |
+
|
| 491 |
+
balance_match = re.search(r"Closing Balance:\s*(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)", text)
|
| 492 |
+
closing_balance = float(balance_match.group(1).replace(',', '').replace('R', '')) if balance_match else 0.0
|
| 493 |
+
|
| 494 |
+
return account_holder_name, account_number, statement_period, closing_balance
|
| 495 |
+
|
| 496 |
+
else: # Default for other banks
|
| 497 |
+
name_match = re.search(r"Account Holder:\s*(.+?)\n", text)
|
| 498 |
+
account_holder_name = name_match.group(1).strip() if name_match else "Name not found"
|
| 499 |
+
|
| 500 |
+
balance_match = re.search(r"Closing Balance:\s*(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)", text)
|
| 501 |
+
closing_balance = float(balance_match.group(1).replace(',', '').replace('R', '')) if balance_match else 0.0
|
| 502 |
+
|
| 503 |
+
return account_holder_name, closing_balance
|
| 504 |
+
|
| 505 |
def parse_pdf_enhanced(file):
|
| 506 |
"""Enhanced PDF parsing with better text extraction"""
|
| 507 |
try:
|
|
|
|
| 510 |
for page in pdf.pages:
|
| 511 |
page_text = page.extract_text()
|
| 512 |
if page_text:
|
| 513 |
+
text += page_text + '\n'
|
| 514 |
return text
|
| 515 |
except Exception as e:
|
| 516 |
st.error(f"Error parsing PDF: {str(e)}")
|
| 517 |
return ""
|
| 518 |
|
| 519 |
+
def process_text_to_df_enhanced(text, bank_name):
|
| 520 |
+
"""Process text to DataFrame based on bank format"""
|
| 521 |
transactions = []
|
| 522 |
+
|
| 523 |
+
if bank_name == 'FNB':
|
| 524 |
+
transaction_pattern = re.compile(
|
| 525 |
+
r'(\d{2} \w{3})\s+' # Date (e.g., "02 Apr")
|
| 526 |
+
r'(.+?)\s+' # Description
|
| 527 |
+
r'(-?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)(Cr|Dr)?\s*' # Amount
|
| 528 |
+
r'(-?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)(Cr|Dr)?' # Balance
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
for line in text.split('\n'):
|
| 532 |
+
line = line.strip()
|
| 533 |
+
if not line or 'Transactions in RAND' in line or 'Date Description' in line:
|
| 534 |
+
continue
|
| 535 |
+
|
| 536 |
+
match = transaction_pattern.search(line)
|
| 537 |
+
if match:
|
| 538 |
+
try:
|
| 539 |
+
groups = match.groups()
|
| 540 |
+
date_str, description, amount_str, cr_dr1, balance_str, _ = groups
|
| 541 |
+
|
| 542 |
+
# Convert date to standard format
|
| 543 |
+
current_year = datetime.now().year
|
| 544 |
+
date_obj = datetime.strptime(f"{date_str} {current_year}", "%d %b %Y")
|
| 545 |
+
date_str = date_obj.strftime("%Y-%m-%d")
|
| 546 |
+
|
| 547 |
+
# Clean and convert amounts
|
| 548 |
+
amount = float(amount_str.replace(',', ''))
|
| 549 |
+
if cr_dr1 == 'Cr':
|
| 550 |
+
amount = -amount # Credits are negative in our system
|
| 551 |
+
|
| 552 |
+
balance = float(balance_str.replace(',', ''))
|
| 553 |
+
|
| 554 |
+
transactions.append([date_str, description.strip(), amount, balance])
|
| 555 |
+
except (ValueError, AttributeError):
|
| 556 |
+
continue
|
| 557 |
+
|
| 558 |
+
elif bank_name == 'Standard Bank':
|
| 559 |
+
transaction_pattern = re.compile(
|
| 560 |
+
r'(\d{2} \w{3} \d{2})\s+' # Date (e.g., "02 Apr 22")
|
| 561 |
+
r'(.+?)\s+' # Description
|
| 562 |
+
r'(-?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s+' # Amount
|
| 563 |
+
r'(-?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)' # Balance
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
for line in text.split('\n'):
|
| 567 |
+
line = line.strip()
|
| 568 |
+
if not line or 'Date Description' in line or 'Transactions in RAND' in line:
|
| 569 |
+
continue
|
| 570 |
|
| 571 |
+
match = transaction_pattern.search(line)
|
| 572 |
+
if match:
|
| 573 |
+
try:
|
| 574 |
+
date_str, description, amount_str, balance_str = match.groups()
|
| 575 |
+
|
| 576 |
+
# Convert date to standard format
|
| 577 |
+
date_obj = datetime.strptime(date_str, '%d %b %y')
|
| 578 |
+
date_str = date_obj.strftime('%Y-%m-%d')
|
| 579 |
+
|
| 580 |
+
# Clean and convert amounts
|
| 581 |
+
amount = float(amount_str.replace(',', ''))
|
| 582 |
+
balance = float(balance_str.replace(',', ''))
|
| 583 |
+
|
| 584 |
+
transactions.append([date_str, description.strip(), amount, balance])
|
| 585 |
+
except (ValueError, AttributeError):
|
| 586 |
+
continue
|
| 587 |
+
|
| 588 |
+
elif bank_name == 'Nedbank':
|
| 589 |
+
transaction_pattern = re.compile(
|
| 590 |
+
r'(\d{2}/\d{2}/\d{4})\s+' # Date (e.g., "02/04/2022")
|
| 591 |
+
r'(.+?)\s+' # Description
|
| 592 |
+
r'(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s+' # Amount
|
| 593 |
+
r'(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)' # Balance
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
for line in text.split('\n'):
|
| 597 |
+
line = line.strip()
|
| 598 |
+
if not line or 'Date Description' in line or 'Transactions in RAND' in line:
|
| 599 |
+
continue
|
| 600 |
|
| 601 |
+
match = transaction_pattern.search(line)
|
| 602 |
+
if match:
|
| 603 |
+
try:
|
| 604 |
+
date_str, description, amount_str, balance_str = match.groups()
|
| 605 |
+
|
| 606 |
+
# Clean and convert amounts
|
| 607 |
+
amount = float(amount_str.replace(',', '').replace('R', '').replace(' ', ''))
|
| 608 |
+
balance = float(balance_str.replace(',', '').replace('R', '').replace(' ', ''))
|
| 609 |
+
|
| 610 |
+
transactions.append([date_str, description.strip(), amount, balance])
|
| 611 |
+
except (ValueError, AttributeError):
|
| 612 |
+
continue
|
| 613 |
+
|
| 614 |
+
else: # Default pattern for other banks
|
| 615 |
+
transaction_pattern = re.compile(
|
| 616 |
+
r'(\d{4}-\d{2}-\d{2})\s+' # Date
|
| 617 |
+
r'(.+?)\s+' # Description
|
| 618 |
+
r'(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s+' # Amount
|
| 619 |
+
r'(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)' # Balance
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
for line in text.split('\n'):
|
| 623 |
+
line = line.strip()
|
| 624 |
+
if not line:
|
| 625 |
+
continue
|
| 626 |
|
| 627 |
+
match = transaction_pattern.search(line)
|
| 628 |
+
if match:
|
| 629 |
+
try:
|
| 630 |
+
date_str, description, amount_str, balance_str = match.groups()
|
| 631 |
|
| 632 |
+
# Clean and convert amounts
|
| 633 |
+
amount = float(amount_str.replace(',', '').replace('R', '').replace(' ', ''))
|
| 634 |
+
balance = float(balance_str.replace(',', '').replace('R', '').replace(' ', ''))
|
| 635 |
|
| 636 |
+
transactions.append([date_str, description.strip(), amount, balance])
|
| 637 |
+
except (ValueError, AttributeError):
|
| 638 |
+
continue
|
| 639 |
|
| 640 |
if not transactions:
|
| 641 |
return pd.DataFrame(columns=['Date', 'Description', 'Amount', 'Balance'])
|
|
|
|
| 643 |
df = pd.DataFrame(transactions, columns=['Date', 'Description', 'Amount', 'Balance'])
|
| 644 |
df['Date'] = pd.to_datetime(df['Date'])
|
| 645 |
df = df.sort_values('Date').reset_index(drop=True)
|
| 646 |
+
df['Bank'] = bank_name # Add bank name column
|
| 647 |
|
| 648 |
return df
|
| 649 |
|
| 650 |
+
def categorize_expense_enhanced(description, bank_name):
|
| 651 |
+
"""Enhanced expense categorization with bank-specific rules"""
|
| 652 |
description_lower = description.lower()
|
| 653 |
|
| 654 |
+
# Common categories across all banks
|
| 655 |
+
common_categories = {
|
| 656 |
'Salary/Income': ['salary', 'wage', 'income', 'payroll', 'refund'],
|
| 657 |
'Groceries': ['grocery', 'supermarket', 'food', 'spar', 'checkers', 'woolworths'],
|
| 658 |
'Transport': ['fuel', 'petrol', 'uber', 'taxi', 'transport', 'car payment'],
|
|
|
|
| 662 |
'Shopping': ['retail', 'clothing', 'amazon', 'takealot', 'mall'],
|
| 663 |
'Investments': ['investment', 'shares', 'unit trust', 'retirement'],
|
| 664 |
'Insurance': ['insurance', 'medical aid', 'life cover', 'short term'],
|
| 665 |
+
'Bank Charges': ['fees', 'charge', 'service', 'cost', 'monthly account fee'],
|
| 666 |
+
'Cash Transactions': ['atm', 'cash', 'withdrawal', 'deposit'],
|
|
|
|
|
|
|
|
|
|
| 667 |
'Cellular': ['airtime', 'data', 'vodacom', 'mtn', 'cell c'],
|
| 668 |
'Interest': ['interest'],
|
| 669 |
'Failed Transactions': ['unsuccessful', 'declined', 'failed']
|
| 670 |
}
|
| 671 |
|
| 672 |
+
# Bank-specific categories
|
| 673 |
+
bank_specific = {
|
| 674 |
+
'FNB': {
|
| 675 |
+
'POS Purchases': ['pos purchase', 'card purchase', 'debit order'],
|
| 676 |
+
'Payments': ['payment to', 'fnb app rtc pmt', 'internet pmt', 'debit order']
|
| 677 |
+
},
|
| 678 |
+
'Standard Bank': {
|
| 679 |
+
'Payments': ['payment', 'transfer', 'debit order', 'immediate trf', 'digital payment']
|
| 680 |
+
},
|
| 681 |
+
'Nedbank': {
|
| 682 |
+
'POS Purchases': ['pos purchase', 'card purchase', 'debit order', 'cashsend'],
|
| 683 |
+
'Payments': ['payment to', 'immediate trf', 'digital payment', 'pmt to'],
|
| 684 |
+
'Loans': ['loan payment', 'nedloan', 'personal loan']
|
| 685 |
+
},
|
| 686 |
+
'ABSA': {
|
| 687 |
+
'POS Purchases': ['cashsend mobile', 'pos purchase'],
|
| 688 |
+
'Payments': ['immediate trf', 'digital payment', 'payment']
|
| 689 |
+
}
|
| 690 |
+
}
|
| 691 |
+
|
| 692 |
+
# Combine common and bank-specific categories
|
| 693 |
+
category_keywords = {**common_categories, **(bank_specific.get(bank_name, {}))}
|
| 694 |
+
|
| 695 |
# Check for specific keywords
|
| 696 |
for category, keywords in category_keywords.items():
|
| 697 |
if any(keyword in description_lower for keyword in keywords):
|
|
|
|
| 706 |
except:
|
| 707 |
pass
|
| 708 |
|
| 709 |
+
return 'Other'
|
| 710 |
|
| 711 |
def create_advanced_visualizations(df, patterns, recommendations):
|
| 712 |
"""Create advanced interactive visualizations"""
|
|
|
|
| 713 |
# 1. Financial Health Dashboard
|
| 714 |
col1, col2, col3, col4 = st.columns(4)
|
| 715 |
|
|
|
|
| 781 |
|
| 782 |
def main():
|
| 783 |
"""Main application function"""
|
|
|
|
| 784 |
# Initialize database
|
| 785 |
db = DatabaseManager()
|
| 786 |
|
| 787 |
# Sidebar for user authentication
|
| 788 |
with st.sidebar:
|
| 789 |
+
st.title("๐ฆ Universal Bank Analyzer")
|
| 790 |
|
| 791 |
if st.session_state.user_profile is None:
|
| 792 |
tab1, tab2 = st.tabs(["Login", "Sign Up"])
|
|
|
|
| 832 |
st.session_state.user_profile = None
|
| 833 |
st.session_state.transactions_df = None
|
| 834 |
st.session_state.analysis_complete = False
|
| 835 |
+
st.session_state.detected_bank = None
|
| 836 |
st.experimental_rerun()
|
| 837 |
|
| 838 |
# Main content area
|
| 839 |
if st.session_state.user_profile is None:
|
| 840 |
st.markdown("""
|
| 841 |
+
# ๐ฆ Universal Bank Statement Analysis
|
| 842 |
+
|
| 843 |
+
### Welcome to the next generation of financial analysis for all major banks!
|
| 844 |
|
| 845 |
+
**Supported Banks:**
|
| 846 |
+
- FNB (First National Bank)
|
| 847 |
+
- Standard Bank
|
| 848 |
+
- Nedbank
|
| 849 |
+
- ABSA
|
| 850 |
+
- Capitec Bank
|
| 851 |
|
| 852 |
**Key Features:**
|
| 853 |
- ๐ค **AI-Powered Insights**: Advanced machine learning for personalized recommendations
|
|
|
|
| 856 |
- ๐ฎ **Predictive Analysis**: Forecast future spending trends
|
| 857 |
- ๐ก๏ธ **Anomaly Detection**: Identify unusual transactions
|
| 858 |
- ๐ก **Smart Recommendations**: Personalized financial advice
|
| 859 |
+
- ๐ฐ **Loan Eligibility**: Check your loan eligibility instantly
|
| 860 |
|
| 861 |
**Please login or create an account to get started.**
|
| 862 |
""")
|
|
|
|
| 863 |
return
|
| 864 |
|
| 865 |
# Main analysis interface
|
| 866 |
+
st.title(f"๐ฆ Universal Bank Analysis Dashboard - {st.session_state.user_profile['name']}")
|
| 867 |
|
| 868 |
# File upload section
|
| 869 |
st.markdown("### ๐ Upload Your Bank Statement")
|
| 870 |
uploaded_file = st.file_uploader(
|
| 871 |
"Choose a PDF bank statement",
|
| 872 |
type="pdf",
|
| 873 |
+
help="Upload your bank statement in PDF format for analysis"
|
| 874 |
)
|
| 875 |
|
| 876 |
if uploaded_file is not None:
|
| 877 |
try:
|
| 878 |
+
# Parse PDF and identify bank
|
| 879 |
+
with st.spinner("๐ Analyzing bank statement..."):
|
| 880 |
+
text = extract_text_from_pdf(uploaded_file)
|
| 881 |
+
bank_name = identify_bank_from_text(text)
|
| 882 |
+
|
| 883 |
+
if not bank_name:
|
| 884 |
+
st.error("Could not identify bank from statement. Please ensure it's from a supported bank.")
|
| 885 |
+
return
|
| 886 |
+
|
| 887 |
+
st.session_state.detected_bank = bank_name
|
| 888 |
+
st.success(f"Detected Bank: {bank_name}")
|
| 889 |
+
|
| 890 |
+
# Extract metadata based on bank
|
| 891 |
+
metadata = extract_bank_statement_metadata(text, bank_name)
|
| 892 |
+
|
| 893 |
+
# Parse transactions
|
| 894 |
+
df = process_text_to_df_enhanced(text, bank_name)
|
| 895 |
|
| 896 |
if df.empty:
|
| 897 |
st.warning("โ ๏ธ No transactions found in the uploaded statement. Please check the file format.")
|
|
|
|
| 901 |
st.session_state.transactions_df = df
|
| 902 |
|
| 903 |
# Enhance data with categories
|
| 904 |
+
df['Category'] = df['Description'].apply(lambda x: categorize_expense_enhanced(x, bank_name))
|
| 905 |
|
| 906 |
# Initialize analytics engines
|
| 907 |
personalization = PersonalizationEngine(st.session_state.user_profile)
|
|
|
|
| 912 |
patterns = personalization.analyze_spending_patterns(df)
|
| 913 |
recommendations = personalization.generate_personalized_recommendations(df, patterns)
|
| 914 |
health_score, score_components = personalization.calculate_financial_health_score(df, patterns)
|
| 915 |
+
loan_prediction = analytics.enhanced_loan_prediction(df, bank_name)
|
| 916 |
df_with_anomalies = analytics.detect_anomalies(df)
|
| 917 |
|
| 918 |
st.session_state.analysis_complete = True
|
| 919 |
|
| 920 |
+
# Display account info
|
| 921 |
+
if bank_name == 'FNB':
|
| 922 |
+
account_holder_name, closing_balance = metadata
|
| 923 |
+
st.success(f"Account Holder: {account_holder_name}")
|
| 924 |
+
st.info(f"Closing Balance: R{closing_balance:,.2f}")
|
| 925 |
+
else:
|
| 926 |
+
account_holder_name, account_number, statement_period, closing_balance = metadata
|
| 927 |
+
st.success(f"Account Holder: {account_holder_name}")
|
| 928 |
+
st.info(f"Account Number: {account_number} | Statement Period: {statement_period}")
|
| 929 |
+
st.info(f"Closing Balance: R{closing_balance:,.2f}")
|
| 930 |
+
|
| 931 |
# Display results in tabs
|
| 932 |
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
|
| 933 |
"๐ Overview", "๐ก Recommendations", "๐ฅ Health Score",
|
|
|
|
| 1125 |
|
| 1126 |
except Exception as e:
|
| 1127 |
st.error(f"โ An error occurred while processing your statement: {str(e)}")
|
| 1128 |
+
st.info("Please ensure your PDF is a valid bank statement and try again.")
|
| 1129 |
|
| 1130 |
if __name__ == "__main__":
|
| 1131 |
main()
|
|
|
|
| 1167 |
color: white;
|
| 1168 |
}
|
| 1169 |
</style>
|
| 1170 |
+
""", unsafe_allow_html=True)
|