--- license: apache-2.0 pipeline_tag: depth-estimation --- # FastDepth ## **Use case** : `Depth Estimation` # Model description FastDepth is a lightweight encoder-decoder network designed for real-time monocular depth estimation, optimized for edge devices. This implementation is based on model number 146 from [PINTO's model zoo](https://github.com/PINTO0309/PINTO_model_zoo), which builds upon a MobileNetV1 based feature extractor and a fast decoder. Although the original training dataset is not explicitly provided, it is most likely **NYU Depth V2**, a standard benchmark dataset for indoor depth estimation. ## Network information | Network Information | Value | |-------------------------|----------------------------------------------------------------| | Framework | TensorFlowLite | | Quantization | int8 | | Provenance | PINTO Model Zoo #146 | | Paper | [Link to Paper](https://arxiv.org/pdf/1903.03273)| The models are quantized using tensorflow lite converter. ## Network inputs / outputs | Input Shape | Description | |--------------|-----------------------------------------------------| | (1, H, W, 3) | Single RGB image (int8) | | Output Shape | Description | |---------------|-------------------------------------------------| | (1, H, W, 1) | Single-channel depth prediction (int8)| ## Recommended platforms | Platform | Supported | Recommended | |----------|--------|-----------| | STM32L0 |[]|[]| | STM32L4 |[]|[]| | STM32U5 |[]|[]| | STM32H7 |[]|[]| | STM32MP1 |[]|[]| | STM32MP2 |[x]|[x]| | STM32N6 |[x]|[x]| # Performances ## Metrics Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option. ### Reference **NPU** memory footprint | Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version | |------------|---------------|----------|------------|-----------|--------------|--------------|---------------|----------------------|-----------------------| | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6 | 2365.98 | 0.0 | 1505.19 | 10.2.0 | 2.2.0 | | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 256x256x3 | STM32N6 | 2688 | 1024.0 | 1505.19 | 10.2.0 | 2.2.0 | | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_320/fast_depth_320_int8_pc.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6 | 2800 | 1600 | 1505.17 | 10.2.0 | 2.2.0 | ### Reference **NPU** inference time | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version | |------------|---------------|----------|------------|------------------|------------------|---------------------|-------------|----------------------|-------------------------| | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 24.43 | 40.93 | 10.2.0 | 2.2.0 | | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 55.51 | 18.01 | 10.2.0 | 2.2.0 | | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_320/fast_depth_320_int8_pc.tflite) | NYU depth v2 | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 56.07 | 17.83 | 10.2.0 | 2.2.0 | Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)