Update Readme ST Model Zoo
Browse files
README.md
CHANGED
|
@@ -1,10 +1,3 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: other
|
| 3 |
-
license_name: sla0044
|
| 4 |
-
license_link: >-
|
| 5 |
-
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/LICENSE.md
|
| 6 |
-
pipeline_tag: object-detection
|
| 7 |
-
---
|
| 8 |
# SSD MobileNet v2 FPN-lite quantized
|
| 9 |
|
| 10 |
## **Use case** : `Object detection`
|
|
@@ -67,73 +60,68 @@ For an image resolution of NxM and NC classes
|
|
| 67 |
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
| 68 |
|
| 69 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
| 70 |
-
|Model
|
| 71 |
-
|
| 72 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite)
|
| 73 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person
|
| 74 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person
|
| 75 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person
|
| 76 |
-
|
| 77 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 78 |
|
| 79 |
|
| 80 |
-
| Model
|
| 81 |
-
|
| 82 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | COCO-Person
|
| 83 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person
|
| 84 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person
|
| 85 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person
|
| 86 |
-
|
| 87 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
| 88 |
|
| 89 |
|
| 90 |
-
| Model
|
| 91 |
-
|
| 92 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/
|
| 93 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/
|
| 94 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/
|
| 95 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | STM32H7 | 2869.05 | 70.3 | 1321.02 | 193.23 | 2939.35 | 1514.25 | 10.0.0 |
|
| 96 |
-
|
| 97 |
|
| 98 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 99 |
|
| 100 |
|
| 101 |
-
| Model
|
| 102 |
-
|
| 103 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8
|
| 104 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8
|
| 105 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8
|
| 106 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8
|
| 107 |
-
|
| 108 |
|
| 109 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 110 |
|
| 111 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
| 112 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
| 113 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz |
|
| 114 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 48.
|
| 115 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 40.
|
| 116 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz |
|
| 117 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 193.
|
| 118 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
| 119 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
| 120 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
| 121 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
| 122 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
| 123 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
| 124 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
| 125 |
|
| 126 |
|
| 127 |
### Reference **MPU** inference time based on COCO 80 classes dataset (see Accuracy for details on dataset)
|
| 128 |
|
| 129 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
| 130 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
| 131 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz |
|
| 132 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz |
|
| 133 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
| 134 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
| 135 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
| 136 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
| 137 |
|
| 138 |
|
| 139 |
|
|
@@ -144,19 +132,19 @@ Measures are done with default STM32Cube.AI configuration with enabled input / o
|
|
| 144 |
|
| 145 |
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
|
| 146 |
|
| 147 |
-
| Model | Format | Resolution |
|
| 148 |
-
|
| 149 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3
|
| 150 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192.h5) | Float | 192x192x3
|
| 151 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3
|
| 152 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224.h5) | Float | 224x224x3
|
| 153 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3
|
| 154 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256.h5) | Float | 256x256x3
|
| 155 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3
|
| 156 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416.h5) | Float | 416x416x3
|
| 157 |
|
| 158 |
|
| 159 |
-
\* EVAL_IOU = 0.
|
| 160 |
|
| 161 |
|
| 162 |
### AP on COCO 80 classes dataset
|
|
@@ -164,14 +152,14 @@ Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0]
|
|
| 164 |
|
| 165 |
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
|
| 166 |
|
| 167 |
-
| Model | Format | Resolution |
|
| 168 |
-
|
| 169 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8
|
| 170 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256.h5) | Float
|
| 171 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8
|
| 172 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416.h5) | Float
|
| 173 |
|
| 174 |
-
\* EVAL_IOU = 0.
|
| 175 |
|
| 176 |
## Retraining and Integration in a simple example:
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# SSD MobileNet v2 FPN-lite quantized
|
| 2 |
|
| 3 |
## **Use case** : `Object detection`
|
|
|
|
| 60 |
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
| 61 |
|
| 62 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
| 63 |
+
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
| 64 |
+
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------|----------|----------------------|----------------------|-----------------------|------------------------|-------------------------|
|
| 65 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 600.08 | 0 | 1480.99 | 10.2.0 | 2.2.0 |
|
| 66 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 1118.31 | 0 | 1507.86 | 10.2.0 | 2.2.0 |
|
| 67 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1574.94 | 0 | 1537.47 | 10.2.0 | 2.2.0 |
|
| 68 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 2547.84 | 2028 | 1738.25 | 10.2.0 | 2.2.0 |
|
|
|
|
| 69 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 70 |
|
| 71 |
|
| 72 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
| 73 |
+
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------|---------------|--------------------|-----------------------|-------------|------------------------|-------------------------|
|
| 74 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 13.5 | 74.07 | 10.2.0 | 2.2.0 |
|
| 75 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 17.11 | 58.45 | 10.2.0 | 2.2.0 |
|
| 76 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 21.21 | 47.15 | 10.2.0 | 2.2.0 |
|
| 77 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6570-DK | NPU/MCU | 109.65 | 9.12 | 10.2.0 | 2.2.0 |
|
|
|
|
| 78 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
| 79 |
|
| 80 |
|
| 81 |
+
| Model | Format | Resolution | Series | Activation RAM (KiB) | Runtime RAM (KiB) | Weights Flash (KiB) | Code Flash (KiB) | Total RAM (KiB) | Total Flash (KiB) | STM32Cube.AI version |
|
| 82 |
+
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|----------|------------------------|---------------------|-----------------------|--------------------|-------------------|---------------------|------------------------|
|
| 83 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 956.82 | 70.31 | 1120.63 | 192.19 | 1027.13 | 1312.82 | 10.2.0 |
|
| 84 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 1238.29 | 70.31 | 1145.24 | 192.16 | 1308.6 | 1337.4 | 10.2.0 |
|
| 85 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | STM32H7 | 2869.05 | 70.31 | 1321.02 | 192.58 | 2939.36 | 1513.6 | 10.2.0 |
|
|
|
|
|
|
|
| 86 |
|
| 87 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 88 |
|
| 89 |
|
| 90 |
+
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
| 91 |
+
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|------------------|--------------------|-------------|-----------------------|------------------------|
|
| 92 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 480.95 | 10.2.0 |
|
| 93 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 660.75 | 10.2.0 |
|
| 94 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 854.94 | 10.2.0 |
|
| 95 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 2666.23 | 10.2.0 |
|
|
|
|
| 96 |
|
| 97 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 98 |
|
| 99 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
| 100 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
| 101 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 34.94 ms | 7.32 | 92.68 |0 | v6.1.0 | OpenVX |
|
| 102 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 48.44 ms | 6.53 | 93.47 |0 | v6.1.0 | OpenVX |
|
| 103 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 40.19 ms | 6.43 | 93.57 |0 | v6.1.0 | OpenVX |
|
| 104 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 109.8 ms | 4.96 | 95.04 |0 | v6.1.0 | OpenVX |
|
| 105 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 193.48 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 106 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 260.48 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 107 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 337.94 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 108 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 873.31 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 109 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 288.41 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 110 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 392.02 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 111 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 509.83 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 112 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1339.35 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 113 |
|
| 114 |
|
| 115 |
### Reference **MPU** inference time based on COCO 80 classes dataset (see Accuracy for details on dataset)
|
| 116 |
|
| 117 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
| 118 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
| 119 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 98.38 ms | 8.86 | 91.14 |0 | v6.1.0 | OpenVX |
|
| 120 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 274.64 ms | 8.38 | 91.62 |0 | v6.1.0 | OpenVX |
|
| 121 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 749.00 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 122 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 1965.36 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 123 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1124.94 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 124 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 2983.66 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 125 |
|
| 126 |
|
| 127 |
|
|
|
|
| 132 |
|
| 133 |
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
|
| 134 |
|
| 135 |
+
| Model | Format | Resolution | AP* |
|
| 136 |
+
|-------|--------|------------|-----|
|
| 137 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | 35.0 % |
|
| 138 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192.h5) | Float | 192x192x3 | 35.2 % |
|
| 139 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | 45.3 % |
|
| 140 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224.h5) | Float | 224x224x3 | 45.5 % |
|
| 141 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | 51.3 % |
|
| 142 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256.h5) | Float | 256x256x3 | 51.8 % |
|
| 143 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | 55.4 % |
|
| 144 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416.h5) | Float | 416x416x3 | 56.3 % |
|
| 145 |
|
| 146 |
|
| 147 |
+
\* EVAL_IOU = 0.5, NMS_THRESH = 0.5, SCORE_THRESH = 0.001, MAX_DETECTIONS = 100
|
| 148 |
|
| 149 |
|
| 150 |
### AP on COCO 80 classes dataset
|
|
|
|
| 152 |
|
| 153 |
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
|
| 154 |
|
| 155 |
+
| Model | Format | Resolution | mAP* |
|
| 156 |
+
|-------|--------|------------|------|
|
| 157 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | 27.1 % |
|
| 158 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256.h5) | Float | 256x256x3 | 29.2 % |
|
| 159 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | 28.8 % |
|
| 160 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416.h5) | Float | 416x416x3 | 31.4 % |
|
| 161 |
|
| 162 |
+
\* EVAL_IOU = 0.5, NMS_THRESH = 0.5, SCORE_THRESH = 0.001, MAX_DETECTIONS = 100
|
| 163 |
|
| 164 |
## Retraining and Integration in a simple example:
|
| 165 |
|