Update Readme ST Model Zoo
Browse files
README.md
CHANGED
|
@@ -1,10 +1,3 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: other
|
| 3 |
-
license_name: sla0044
|
| 4 |
-
license_link: >-
|
| 5 |
-
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/LICENSE.md
|
| 6 |
-
pipeline_tag: object-detection
|
| 7 |
-
---
|
| 8 |
# ST YOLO LC V1 quantized
|
| 9 |
|
| 10 |
## **Use case** : `Object detection`
|
|
@@ -64,53 +57,49 @@ Measures are done with default STM32Cube.AI configuration with enabled input / o
|
|
| 64 |
|
| 65 |
|
| 66 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
| 67 |
-
|Model
|
| 68 |
-
|
| 69 |
-
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite)| COCO-Person | Int8
|
| 70 |
-
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite)| COCO-Person | Int8
|
| 71 |
-
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite)| COCO-Person | Int8
|
| 72 |
-
|
| 73 |
-
|
| 74 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 75 |
-
| Model
|
| 76 |
-
|
| 77 |
-
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | COCO-Person | Int8
|
| 78 |
-
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | COCO-Person | Int8
|
| 79 |
-
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/
|
| 80 |
|
| 81 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
| 82 |
|
| 83 |
|
| 84 |
-
| Model
|
| 85 |
-
|
| 86 |
-
| st_yolo_lc_v1
|
| 87 |
-
| st_yolo_lc_v1
|
| 88 |
-
| st_yolo_lc_v1
|
| 89 |
-
|
| 90 |
|
| 91 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 92 |
|
| 93 |
|
| 94 |
-
| Model
|
| 95 |
-
|
| 96 |
-
| st_yolo_lc_v1
|
| 97 |
-
| st_yolo_lc_v1
|
| 98 |
-
| st_yolo_lc_v1
|
| 99 |
-
|
| 100 |
|
| 101 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 102 |
|
| 103 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
| 104 |
|---------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
| 105 |
-
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz |
|
| 106 |
-
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.
|
| 107 |
-
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz |
|
| 108 |
-
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
| 109 |
-
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 45.
|
| 110 |
-
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
| 111 |
-
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 52.
|
| 112 |
-
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
| 113 |
-
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
| 114 |
|
| 115 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
| 116 |
|
|
@@ -119,16 +108,16 @@ Measures are done with default STM32Cube.AI configuration with enabled input / o
|
|
| 119 |
|
| 120 |
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
|
| 121 |
|
| 122 |
-
| Model | Format | Resolution |
|
| 123 |
-
|
| 124 |
-
| st_yolo_lc_v1 | Int8 | 192x192x3
|
| 125 |
-
| st_yolo_lc_v1 | Float | 192x192x3
|
| 126 |
-
| st_yolo_lc_v1 | Int8 | 224x224x3
|
| 127 |
-
| st_yolo_lc_v1 | Float | 224x224x3
|
| 128 |
-
| st_yolo_lc_v1 | Int8 | 256x256x3
|
| 129 |
-
| st_yolo_lc_v1 | Float | 256x256x3
|
| 130 |
|
| 131 |
-
\* EVAL_IOU = 0.
|
| 132 |
|
| 133 |
|
| 134 |
## Retraining and Integration in a simple example:
|
|
@@ -160,5 +149,4 @@ Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/S
|
|
| 160 |
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
| 161 |
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
| 162 |
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 163 |
-
}
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# ST YOLO LC V1 quantized
|
| 2 |
|
| 3 |
## **Use case** : `Object detection`
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
| 60 |
+
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
| 61 |
+
|---------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------|----------|----------------------|----------------------|-----------------------|------------------------|-------------------------|
|
| 62 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 252 | 0 | 316.69 | 10.2.0 | 2.2.0 |
|
| 63 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 343 | 0 | 316.69 | 10.2.0 | 2.2.0 |
|
| 64 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 576 | 0 | 316.69 | 10.2.0 | 2.2.0 |
|
|
|
|
|
|
|
| 65 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 66 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
| 67 |
+
|---------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------|---------------|--------------------|-----------------------|-------------|------------------------|-------------------------|
|
| 68 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 1.96 | 510.2 | 10.2.0 | 2.2.0 |
|
| 69 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 2.36 | 423.73 | 10.2.0 | 2.2.0 |
|
| 70 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 3.02 | 331.13 | 10.2.0 | 2.2.0 |
|
| 71 |
|
| 72 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
| 73 |
|
| 74 |
|
| 75 |
+
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
| 76 |
+
|---------------------------------------------------------------------------------------------------------------------|----------|--------------|----------|------------------|---------------|-----------------|--------------|-------------|---------------|------------------------|
|
| 77 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 166.29 | 8.09 | 276.73 | 52.81 | 174.38 | 329.54 | 10.2.0 |
|
| 78 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 217.29 | 8.09 | 276.73 | 52.82 | 225.38 | 329.55 | 10.2.0 |
|
| 79 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 278.29 | 8.09 | 276.73 | 52.81 | 286.38 | 329.54 | 10.2.0 |
|
|
|
|
| 80 |
|
| 81 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 82 |
|
| 83 |
|
| 84 |
+
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
| 85 |
+
|---------------------------------------------------------------------------------------------------------------------|----------|--------------|------------------|--------------------|-------------|-----------------------|------------------------|
|
| 86 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 179.36 | 10.2.0 |
|
| 87 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 244.75 | 10.2.0 |
|
| 88 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 320.79 | 10.2.0 |
|
|
|
|
| 89 |
|
| 90 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
| 91 |
|
| 92 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
| 93 |
|---------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
| 94 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 11.88 ms | 2.62 | 97.38 |0 | v6.1.0 | OpenVX |
|
| 95 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.60 ms | 3.33 | 96.67 |0 | v6.1.0 | OpenVX |
|
| 96 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 13.93 ms | 5.12 | 94.88 |0 | v6.1.0 | OpenVX |
|
| 97 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 33.38 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 98 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 45.43 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 99 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 58.80 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 100 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 52.63 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 101 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 72.51 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 102 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 95.84 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
| 103 |
|
| 104 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
| 105 |
|
|
|
|
| 108 |
|
| 109 |
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
|
| 110 |
|
| 111 |
+
| Model | Format | Resolution | AP |
|
| 112 |
+
|-------|--------|------------|----|
|
| 113 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | 30.7 % |
|
| 114 |
+
| st_yolo_lc_v1 | Float | 192x192x3 | 31.2 % |
|
| 115 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | 34.2 % |
|
| 116 |
+
| st_yolo_lc_v1 | Float | 224x224x3 | 33.8 % |
|
| 117 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | 35.6 % |
|
| 118 |
+
| st_yolo_lc_v1 | Float | 256x256x3 | 36.4 % |
|
| 119 |
|
| 120 |
+
\* EVAL_IOU = 0.5, NMS_THRESH = 0.5, SCORE_THRESH = 0.001, MAX_DETECTIONS = 100
|
| 121 |
|
| 122 |
|
| 123 |
## Retraining and Integration in a simple example:
|
|
|
|
| 149 |
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
| 150 |
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
| 151 |
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 152 |
+
}
|
|
|