File size: 5,558 Bytes
748edd0
 
 
 
5e5aa43
748edd0
 
5e5aa43
748edd0
 
 
5e5aa43
748edd0
 
 
 
 
 
5e5aa43
 
 
 
 
 
 
748edd0
 
 
 
 
 
5e5aa43
 
 
 
 
 
 
 
 
 
 
 
 
748edd0
 
 
 
 
5e5aa43
 
748edd0
 
5e5aa43
 
748edd0
 
 
 
 
 
 
5e5aa43
 
 
 
 
 
 
 
 
 
 
 
748edd0
 
5e5aa43
 
 
 
 
 
 
748edd0
 
5e5aa43
748edd0
 
5e5aa43
 
748edd0
 
 
5e5aa43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748edd0
5e5aa43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from typing import Optional, Tuple

import torch
from torch import nn
from transformers import PreTrainedModel
from transformers.cache_utils import Cache

from configuration_spect1 import SpecT1Config


class SpecT1MTPLayers(nn.Module):
    def __init__(self, config: SpecT1Config):
        super().__init__()
        self.input_layernorm = nn.LayerNorm(config.hidden_size)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size)
        self.token_layernorm = nn.LayerNorm(config.hidden_size)
        self.hidden_layernorm = nn.LayerNorm(config.hidden_size)
        self.final_layernorm = nn.LayerNorm(config.hidden_size)
        self.input_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
        self.self_attn = nn.MultiheadAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            batch_first=True
        )
        self.mlp = nn.Sequential(
            nn.Linear(config.hidden_size, config.intermediate_size),
            nn.ReLU(),
            nn.Linear(config.intermediate_size, config.hidden_size)
        )

    def forward(
        self,
        input_embeds: torch.Tensor,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        position_embedding: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        cache_position=None,
        **kwargs
    ) -> torch.Tensor:
        input_embeds = self.token_layernorm(input_embeds)
        previous_hidden_states = self.hidden_layernorm(hidden_states)
        hidden_states = self.input_proj(torch.cat([previous_hidden_states, input_embeds], dim=-1))
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        attn_output, _ = self.self_attn(hidden_states, hidden_states, hidden_states, attn_mask=attention_mask)
        hidden_states = residual + attn_output
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        mlp_output = self.mlp(hidden_states)
        hidden_states = residual + mlp_output
        hidden_states = self.final_layernorm(hidden_states)
        return hidden_states

class SpecT1Model(nn.Module):
    config_class = SpecT1Config
    def __init__(self, config: SpecT1Config):
        super().__init__()
        self.config = config
        self.mtp_layers = nn.ModuleList([
            SpecT1MTPLayers(config) for _ in range(config.num_nextn_predict_layers)
        ])

    def forward(
        self,
        input_embeds: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        **kwargs
    ) -> torch.Tensor:
        hidden_states = input_embeds
        for layer in self.mtp_layers:
            hidden_states = layer(
                input_embeds=input_embeds,
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                **kwargs
            )
        return hidden_states

class SpecT1ForCausalLM(PreTrainedModel):
    config_class = SpecT1Config
    def __init__(self, config: SpecT1Config):
        super().__init__(config)
        self.config = config
        self.model = SpecT1Model(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

    def forward(
        self,
        input_ids: torch.Tensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
        **kwargs
    ) -> torch.Tensor:
        if inputs_embeds is None:
            raise ValueError("inputs_embeds must be provided for SpecT1ForCausalLM")
        hidden_states = self.model(
            input_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            **kwargs
        )
        logits = self.lm_head(hidden_states)
        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
        if not return_dict:
            return (logits,) + (loss,) if loss is not None else (logits,)
        from transformers.modeling_outputs import CausalLMOutputWithPast
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            hidden_states=None,
            attentions=None,
            past_key_values=None
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        if inputs_embeds is None:
            raise ValueError("SpecT1ForCausalLM requires inputs_embeds for generation")
        return {
            "inputs_embeds": inputs_embeds,
            "attention_mask": attention_mask,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache", True)
        }