SandLogicTechnologies commited on
Commit
40e6071
·
verified ·
1 Parent(s): d2ed55d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -52
README.md CHANGED
@@ -13,75 +13,67 @@ tags:
13
  - code
14
  - conversational
15
  ---
16
- # Phi-4-Mini-Reasoning (GGUF Q4_KM)
17
 
18
- ## Overview
19
 
20
- **Phi-4-Mini-Reasoning** is a compact, high-performance language model optimized for advanced mathematical reasoning tasks. Built upon the Phi-4-Mini architecture, this 3.8B parameter model excels in multi-step, logic-intensive problem-solving, particularly in environments with limited computational resources. :contentReference[oaicite:2]{index=2}:contentReference[oaicite:3]{index=3}
21
 
22
- ## Model Highlights
 
 
 
 
 
 
 
23
 
24
- - **Architecture**: :contentReference[oaicite:5]{index=5}
25
- - **Vocabulary**: :contentReference[oaicite:8]{index=8}
26
- - **Attention Mechanism**: :contentReference[oaicite:11]{index=11}
27
- - **Context Length**: :contentReference[oaicite:14]{index=14}
28
- - **Training Data**: :contentReference[oaicite:17]{index=17}
29
- - **Training Duration**: :contentReference[oaicite:20]{index=20}
30
- - **Training Date**: :contentReference[oaicite:23]{index=23}
31
- - **Data Cutoff**: :contentReference[oaicite:26]{index=26}
32
- - **Release Date**: :contentReference[oaicite:29]{index=29}
33
- - **Supported Language**: :contentReference[oaicite:32]{index=32}:contentReference[oaicite:34]{index=34}
34
 
35
- ## Intended Use Cases
36
 
37
- ### Primary Applications
38
 
39
- - :contentReference[oaicite:36]{index=36}
40
- - :contentReference[oaicite:39]{index=39}
41
- - :contentReference[oaicite:42]{index=42}
42
- - :contentReference[oaicite:45]{index=45}
43
- - :contentReference[oaicite:48]{index=48}:contentReference[oaicite:50]{index=50}
44
 
45
- ### Deployment Scenarios
46
 
47
- - :contentReference[oaicite:52]{index=52}
48
- - :contentReference[oaicite:55]{index=55}
49
- - :contentReference[oaicite:58]{index=58}:contentReference[oaicite:60]{index=60}
50
 
51
- ## Limitations and Considerations
 
 
 
 
 
 
52
 
53
- - **Domain Specificity**: :contentReference[oaicite:62]{index=62}
54
- - **Language Support**: :contentReference[oaicite:65]{index=65}
55
- - **Ethical Use**: :contentReference[oaicite:68]{index=68}
56
- - **Risk Mitigation**: :contentReference[oaicite:71]{index=71}:contentReference[oaicite:73]{index=73}
57
 
58
- ## Training Methodology
 
 
 
 
 
 
 
 
 
 
59
 
60
- The training process for Phi-4-Mini-Reasoning involved a multi-stage approach:
61
 
62
- 1. **Mid-Training**: :contentReference[oaicite:75]{index=75}
63
- 2. **Supervised Fine-Tuning**: :contentReference[oaicite:78]{index=78}
64
- 3. **Rollout DPO**: :contentReference[oaicite:81]{index=81}
65
- 4. **Reinforcement Learning**: :contentReference[oaicite:84]{index=84} :contentReference[oaicite:86]{index=86}:contentReference[oaicite:87]{index=87}
66
 
67
- ## Performance Benchmarks
68
-
69
- :contentReference[oaicite:89]{index=89} :contentReference[oaicite:91]{index=91}:contentReference[oaicite:92]{index=92}
70
-
71
- ## Format and Integration
72
-
73
- - **Model Format**: :contentReference[oaicite:94]{index=94}
74
- - **Integration**: :contentReference[oaicite:97]{index=97}
75
- - **Lexicon Addition**: :contentReference[oaicite:100]{index=100}:contentReference[oaicite:102]{index=102}
76
-
77
- ## License and Usage
78
-
79
- :contentReference[oaicite:104]{index=104}:contentReference[oaicite:106]{index=106}
80
 
81
- ## References
82
 
83
- - :contentReference[oaicite:108]{index=108}
84
- - :contentReference[oaicite:111]{index=111}:contentReference[oaicite:113]{index=113}
85
 
86
 
87
 
 
13
  - code
14
  - conversational
15
  ---
16
+ # Phi-4-Mini-Reasoning (GGUF Q4_KM) - Sandlogic Lexicons
17
 
18
+ ## Model Summary
19
 
20
+ **Phi-4-Mini-Reasoning** is a lightweight open-source model from the Phi-4 family, designed with a strong focus on high-quality, reasoning-dense synthetic data. It has been further fine-tuned for advanced mathematical reasoning tasks and supports a 128K token context length. This model is especially optimized for logic-intensive scenarios while maintaining a compact size, making it ideal for memory and compute-constrained environments.
21
 
22
+ - **Model Family**: Phi-4
23
+ - **Parameter Count**: 3.8B
24
+ - **Architecture**: Dense decoder-only Transformer
25
+ - **Context Length**: 128K tokens
26
+ - **Quantization**: GGUF Q4_KM
27
+ - **Supported Language**: English
28
+ - **Release Date**: April 2025
29
+ - **Cutoff Date**: February 2025
30
 
31
+ ## Intended Uses
 
 
 
 
 
 
 
 
 
32
 
33
+ ### Primary Use Cases
34
 
35
+ Phi-4-Mini-Reasoning is designed to excel at:
36
 
37
+ - Multi-step mathematical reasoning
38
+ - Formal proof generation
39
+ - Symbolic computation
40
+ - Solving advanced word problems
41
+ - Tasks requiring structured logic and analytical thinking
42
 
43
+ Its high context length and reasoning capabilities make it suitable for latency-bound applications and deployments on resource-constrained hardware.
44
 
45
+ ### Use Case Considerations
 
 
46
 
47
+ - This model is **optimized specifically for mathematical reasoning tasks**.
48
+ - It is **not evaluated for general-purpose downstream tasks** such as conversational AI or creative writing.
49
+ - Developers should:
50
+ - Assess use case suitability.
51
+ - Account for limitations in multi-language support.
52
+ - Evaluate performance, safety, and fairness—especially in high-risk or regulated environments.
53
+ - Ensure compliance with all applicable laws and regulations (e.g., privacy and trade compliance).
54
 
55
+ ## Training Details
 
 
 
56
 
57
+ - **Model Architecture**: Same as Phi-4-Mini with 3.8B parameters
58
+ - **Notable Enhancements**:
59
+ - 200K vocabulary
60
+ - Grouped-query attention
61
+ - Shared input/output embeddings
62
+ - **Training Dataset Size**: 150B tokens
63
+ - **Training Duration**: 2 days
64
+ - **Hardware Used**: 128 × H100-80G GPUs
65
+ - **Training Date**: February 2024
66
+ - **Output**: Generated text
67
+ - **Input Format**: Text (chat-style prompts recommended)
68
 
69
+ ## Integration in Lexicons
70
 
71
+ This quantized GGUF Q4_KM version of Phi-4-Mini-Reasoning is included in our [Sandlogic Lexicons](https://huggingface.co/SandLogicTechnologies) model zoo, making it readily available for efficient inference in edge deployments and research use cases focused on math reasoning.
 
 
 
72
 
73
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ *For optimal results, we recommend using Phi-4-Mini-Reasoning in tasks that require deep mathematical analysis and structured problem solving.*
76
 
 
 
77
 
78
 
79