Update README.md
Browse files
README.md
CHANGED
|
@@ -13,75 +13,67 @@ tags:
|
|
| 13 |
- code
|
| 14 |
- conversational
|
| 15 |
---
|
| 16 |
-
# Phi-4-Mini-Reasoning (GGUF Q4_KM)
|
| 17 |
|
| 18 |
-
##
|
| 19 |
|
| 20 |
-
**Phi-4-Mini-Reasoning** is a
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
- **Vocabulary**: :contentReference[oaicite:8]{index=8}
|
| 26 |
-
- **Attention Mechanism**: :contentReference[oaicite:11]{index=11}
|
| 27 |
-
- **Context Length**: :contentReference[oaicite:14]{index=14}
|
| 28 |
-
- **Training Data**: :contentReference[oaicite:17]{index=17}
|
| 29 |
-
- **Training Duration**: :contentReference[oaicite:20]{index=20}
|
| 30 |
-
- **Training Date**: :contentReference[oaicite:23]{index=23}
|
| 31 |
-
- **Data Cutoff**: :contentReference[oaicite:26]{index=26}
|
| 32 |
-
- **Release Date**: :contentReference[oaicite:29]{index=29}
|
| 33 |
-
- **Supported Language**: :contentReference[oaicite:32]{index=32}:contentReference[oaicite:34]{index=34}
|
| 34 |
|
| 35 |
-
|
| 36 |
|
| 37 |
-
|
| 38 |
|
| 39 |
-
-
|
| 40 |
-
-
|
| 41 |
-
-
|
| 42 |
-
-
|
| 43 |
-
-
|
| 44 |
|
| 45 |
-
|
| 46 |
|
| 47 |
-
|
| 48 |
-
- :contentReference[oaicite:55]{index=55}
|
| 49 |
-
- :contentReference[oaicite:58]{index=58}:contentReference[oaicite:60]{index=60}
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
- **Language Support**: :contentReference[oaicite:65]{index=65}
|
| 55 |
-
- **Ethical Use**: :contentReference[oaicite:68]{index=68}
|
| 56 |
-
- **Risk Mitigation**: :contentReference[oaicite:71]{index=71}:contentReference[oaicite:73]{index=73}
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
|
| 62 |
-
|
| 63 |
-
2. **Supervised Fine-Tuning**: :contentReference[oaicite:78]{index=78}
|
| 64 |
-
3. **Rollout DPO**: :contentReference[oaicite:81]{index=81}
|
| 65 |
-
4. **Reinforcement Learning**: :contentReference[oaicite:84]{index=84} :contentReference[oaicite:86]{index=86}:contentReference[oaicite:87]{index=87}
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
:contentReference[oaicite:89]{index=89} :contentReference[oaicite:91]{index=91}:contentReference[oaicite:92]{index=92}
|
| 70 |
-
|
| 71 |
-
## Format and Integration
|
| 72 |
-
|
| 73 |
-
- **Model Format**: :contentReference[oaicite:94]{index=94}
|
| 74 |
-
- **Integration**: :contentReference[oaicite:97]{index=97}
|
| 75 |
-
- **Lexicon Addition**: :contentReference[oaicite:100]{index=100}:contentReference[oaicite:102]{index=102}
|
| 76 |
-
|
| 77 |
-
## License and Usage
|
| 78 |
-
|
| 79 |
-
:contentReference[oaicite:104]{index=104}:contentReference[oaicite:106]{index=106}
|
| 80 |
|
| 81 |
-
|
| 82 |
|
| 83 |
-
- :contentReference[oaicite:108]{index=108}
|
| 84 |
-
- :contentReference[oaicite:111]{index=111}:contentReference[oaicite:113]{index=113}
|
| 85 |
|
| 86 |
|
| 87 |
|
|
|
|
| 13 |
- code
|
| 14 |
- conversational
|
| 15 |
---
|
| 16 |
+
# Phi-4-Mini-Reasoning (GGUF Q4_KM) - Sandlogic Lexicons
|
| 17 |
|
| 18 |
+
## Model Summary
|
| 19 |
|
| 20 |
+
**Phi-4-Mini-Reasoning** is a lightweight open-source model from the Phi-4 family, designed with a strong focus on high-quality, reasoning-dense synthetic data. It has been further fine-tuned for advanced mathematical reasoning tasks and supports a 128K token context length. This model is especially optimized for logic-intensive scenarios while maintaining a compact size, making it ideal for memory and compute-constrained environments.
|
| 21 |
|
| 22 |
+
- **Model Family**: Phi-4
|
| 23 |
+
- **Parameter Count**: 3.8B
|
| 24 |
+
- **Architecture**: Dense decoder-only Transformer
|
| 25 |
+
- **Context Length**: 128K tokens
|
| 26 |
+
- **Quantization**: GGUF Q4_KM
|
| 27 |
+
- **Supported Language**: English
|
| 28 |
+
- **Release Date**: April 2025
|
| 29 |
+
- **Cutoff Date**: February 2025
|
| 30 |
|
| 31 |
+
## Intended Uses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
### Primary Use Cases
|
| 34 |
|
| 35 |
+
Phi-4-Mini-Reasoning is designed to excel at:
|
| 36 |
|
| 37 |
+
- Multi-step mathematical reasoning
|
| 38 |
+
- Formal proof generation
|
| 39 |
+
- Symbolic computation
|
| 40 |
+
- Solving advanced word problems
|
| 41 |
+
- Tasks requiring structured logic and analytical thinking
|
| 42 |
|
| 43 |
+
Its high context length and reasoning capabilities make it suitable for latency-bound applications and deployments on resource-constrained hardware.
|
| 44 |
|
| 45 |
+
### Use Case Considerations
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
- This model is **optimized specifically for mathematical reasoning tasks**.
|
| 48 |
+
- It is **not evaluated for general-purpose downstream tasks** such as conversational AI or creative writing.
|
| 49 |
+
- Developers should:
|
| 50 |
+
- Assess use case suitability.
|
| 51 |
+
- Account for limitations in multi-language support.
|
| 52 |
+
- Evaluate performance, safety, and fairness—especially in high-risk or regulated environments.
|
| 53 |
+
- Ensure compliance with all applicable laws and regulations (e.g., privacy and trade compliance).
|
| 54 |
|
| 55 |
+
## Training Details
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
- **Model Architecture**: Same as Phi-4-Mini with 3.8B parameters
|
| 58 |
+
- **Notable Enhancements**:
|
| 59 |
+
- 200K vocabulary
|
| 60 |
+
- Grouped-query attention
|
| 61 |
+
- Shared input/output embeddings
|
| 62 |
+
- **Training Dataset Size**: 150B tokens
|
| 63 |
+
- **Training Duration**: 2 days
|
| 64 |
+
- **Hardware Used**: 128 × H100-80G GPUs
|
| 65 |
+
- **Training Date**: February 2024
|
| 66 |
+
- **Output**: Generated text
|
| 67 |
+
- **Input Format**: Text (chat-style prompts recommended)
|
| 68 |
|
| 69 |
+
## Integration in Lexicons
|
| 70 |
|
| 71 |
+
This quantized GGUF Q4_KM version of Phi-4-Mini-Reasoning is included in our [Sandlogic Lexicons](https://huggingface.co/SandLogicTechnologies) model zoo, making it readily available for efficient inference in edge deployments and research use cases focused on math reasoning.
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
*For optimal results, we recommend using Phi-4-Mini-Reasoning in tasks that require deep mathematical analysis and structured problem solving.*
|
| 76 |
|
|
|
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
|