Update README.md
Browse files
README.md
CHANGED
|
@@ -17,6 +17,54 @@ language:
|
|
| 17 |
- **License:** apache-2.0
|
| 18 |
- **Finetuned from model :** unsloth/Qwen3-4B-Base
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
- **License:** apache-2.0
|
| 18 |
- **Finetuned from model :** unsloth/Qwen3-4B-Base
|
| 19 |
|
| 20 |
+
```
|
| 21 |
+
!pip install transformers accelerate peft
|
| 22 |
+
```
|
| 23 |
|
| 24 |
+
|
| 25 |
+
usage
|
| 26 |
+
```python
|
| 27 |
+
import torch
|
| 28 |
+
print(torch.cuda.is_available())
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 32 |
+
|
| 33 |
+
# Model ve tokenizer yükle
|
| 34 |
+
model_name = "Sengil/qwen3-4b-turkish-summarizer"
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 36 |
+
|
| 37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
+
model_name,
|
| 39 |
+
device_map="auto", # accelerate devreye girer
|
| 40 |
+
torch_dtype=torch.float16 # optimize belleği
|
| 41 |
+
)
|
| 42 |
+
model.eval()
|
| 43 |
+
|
| 44 |
+
# Mesaj formatı
|
| 45 |
+
messages = [
|
| 46 |
+
{"role": "system", "content": "Sen bir özetleyicisin. Sana verilen metni özetle."},
|
| 47 |
+
{"role": "user", "content": "text. . ."},
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
# Chat template ile prompt oluştur
|
| 51 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 52 |
+
|
| 53 |
+
# Tokenizer ile input tensor'ları oluştur
|
| 54 |
+
inputs = tokenizer(prompt, return_tensors="pt") # Cihaza atama yapma!
|
| 55 |
+
|
| 56 |
+
# İnferans (generate) işlemi
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
outputs = model.generate(
|
| 59 |
+
input_ids=inputs["input_ids"].to(model.device),
|
| 60 |
+
attention_mask=inputs["attention_mask"].to(model.device),
|
| 61 |
+
max_new_tokens=128,
|
| 62 |
+
do_sample=False,
|
| 63 |
+
temperature=0.7,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Çıktıyı çöz
|
| 67 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 68 |
+
print("\n📝 Özet:", summary)
|
| 69 |
+
|
| 70 |
+
```
|