Update README.md
Browse files
README.md
CHANGED
|
@@ -11,6 +11,9 @@ metrics:
|
|
| 11 |
base_model:
|
| 12 |
- Turkish-NLP/t5-efficient-base-turkish
|
| 13 |
pipeline_tag: text2text-generation
|
|
|
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
|
| 16 |
# **Sengil/t5-turkish-aspect-term-extractor** 🇹🇷
|
|
@@ -19,20 +22,6 @@ A Turkish sequence-to-sequence model based on `Turkish-NLP/t5-efficient-base-tur
|
|
| 19 |
|
| 20 |
Given a Turkish sentence, the model generates a list of **aspect terms** (e.g., *kahve*, *servis*, *fiyatlar*) that reflect the primary discussed entities or features.
|
| 21 |
|
| 22 |
-
|
| 23 |
-
## Demo
|
| 24 |
-
|
| 25 |
-
Try it out below 👇
|
| 26 |
-
|
| 27 |
-
```python
|
| 28 |
-
from transformers import pipeline
|
| 29 |
-
|
| 30 |
-
pipe = pipeline("text2text-generation", model="Sengil/t5-turkish-aspect-term-extractor")
|
| 31 |
-
text = "Yemekler çok lezzetliydi ama garsonlar çok yavaştı."
|
| 32 |
-
output = pipe(text)
|
| 33 |
-
print(output)
|
| 34 |
-
````
|
| 35 |
-
|
| 36 |
---
|
| 37 |
|
| 38 |
## ✨ Example
|
|
|
|
| 11 |
base_model:
|
| 12 |
- Turkish-NLP/t5-efficient-base-turkish
|
| 13 |
pipeline_tag: text2text-generation
|
| 14 |
+
widget:
|
| 15 |
+
- text: "Pilav çok lezzetliydi ama servis yavaştı."
|
| 16 |
+
example_title: "Demo"
|
| 17 |
---
|
| 18 |
|
| 19 |
# **Sengil/t5-turkish-aspect-term-extractor** 🇹🇷
|
|
|
|
| 22 |
|
| 23 |
Given a Turkish sentence, the model generates a list of **aspect terms** (e.g., *kahve*, *servis*, *fiyatlar*) that reflect the primary discussed entities or features.
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
---
|
| 26 |
|
| 27 |
## ✨ Example
|