Sengil commited on
Commit
20b6cf9
·
verified ·
1 Parent(s): 8c86924

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -14
README.md CHANGED
@@ -11,6 +11,9 @@ metrics:
11
  base_model:
12
  - Turkish-NLP/t5-efficient-base-turkish
13
  pipeline_tag: text2text-generation
 
 
 
14
  ---
15
 
16
  # **Sengil/t5-turkish-aspect-term-extractor** 🇹🇷
@@ -19,20 +22,6 @@ A Turkish sequence-to-sequence model based on `Turkish-NLP/t5-efficient-base-tur
19
 
20
  Given a Turkish sentence, the model generates a list of **aspect terms** (e.g., *kahve*, *servis*, *fiyatlar*) that reflect the primary discussed entities or features.
21
 
22
-
23
- ## Demo
24
-
25
- Try it out below 👇
26
-
27
- ```python
28
- from transformers import pipeline
29
-
30
- pipe = pipeline("text2text-generation", model="Sengil/t5-turkish-aspect-term-extractor")
31
- text = "Yemekler çok lezzetliydi ama garsonlar çok yavaştı."
32
- output = pipe(text)
33
- print(output)
34
- ````
35
-
36
  ---
37
 
38
  ## ✨ Example
 
11
  base_model:
12
  - Turkish-NLP/t5-efficient-base-turkish
13
  pipeline_tag: text2text-generation
14
+ widget:
15
+ - text: "Pilav çok lezzetliydi ama servis yavaştı."
16
+ example_title: "Demo"
17
  ---
18
 
19
  # **Sengil/t5-turkish-aspect-term-extractor** 🇹🇷
 
22
 
23
  Given a Turkish sentence, the model generates a list of **aspect terms** (e.g., *kahve*, *servis*, *fiyatlar*) that reflect the primary discussed entities or features.
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ---
26
 
27
  ## ✨ Example