Update README.md
Browse files
README.md
CHANGED
@@ -5,4 +5,75 @@ datasets:
|
|
5 |
- Senqiao/VisionThink-Smart-Val
|
6 |
base_model:
|
7 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- Senqiao/VisionThink-Smart-Val
|
6 |
base_model:
|
7 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
8 |
+
---
|
9 |
+
|
10 |
+
<p align="center" width="100%">
|
11 |
+
<img src="https://raw.githubusercontent.com/dvlab-research/VisionThink/main/files/VisionThink.jpg" alt="Stanford-Alpaca" style="width: 100%; min-width: 300px; display: block; margin: auto;">
|
12 |
+
</p>
|
13 |
+
|
14 |
+
|
15 |
+
# VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning
|
16 |
+
|
17 |
+
|
18 |
+
[](https://arxiv.org/abs/2507.13348)
|
19 |
+
[](https://huggingface.co/papers/2507.13348)
|
20 |
+
[](https://github.com/dvlab-research/VisionThink/blob/main/LICENSE)
|
21 |
+
<a href='https://huggingface.co/collections/Senqiao/visionthink-6878d839fae02a079c9c7bfe'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Data%20Model-Collection-red'></a>
|
22 |
+
|
23 |
+
|
24 |
+
## Senqiao/VisionThink-Efficient
|
25 |
+
|
26 |
+
This model is trained via reinforcement learning using [`Senqiao/VisionThink-Smart-Train`](https://huggingface.co/datasets/Senqiao/VisionThink-Smart-Train), demonstrating enhanced performance and efficiency on general VQA tasks.
|
27 |
+
|
28 |
+
|
29 |
+
**VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning [[Paper](https://arxiv.org/abs/2507.13348)]** <br />
|
30 |
+
[Senqiao Yang](https://scholar.google.com/citations?user=NcJc-RwAAAAJ),
|
31 |
+
[Junyi Li](https://scholar.google.com/citations?hl=zh-CN&user=zQ0P3JAAAAAJ),
|
32 |
+
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ),
|
33 |
+
[Bei Yu](https://scholar.google.com/citations?user=tGneTm4AAAAJ),
|
34 |
+
[Hengshuang Zhao](https://scholar.google.com/citations?user=4uE10I0AAAAJ),
|
35 |
+
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ)<br />
|
36 |
+
|
37 |
+
|
38 |
+
## Highlights
|
39 |
+
<p align="center" width="80%">
|
40 |
+
<img src="https://raw.githubusercontent.com/dvlab-research/VisionThink/main/files/Framework.jpg" alt="Stanford-Alpaca" style="width: 80%; min-width: 300px; display: block; margin: auto;">
|
41 |
+
</p>
|
42 |
+
|
43 |
+
1. Our VisionThink leverages reinforcement learning to **autonomously** learn whether to reduce visual tokens. Compared to traditional efficient VLM approaches, our method achieves significant improvements on **fine-grained** benchmarks, such as those involving OCR-related tasks.
|
44 |
+
|
45 |
+
2. VisionThink improves performance on **General VQA** tasks while reducing visual tokens by **50%**, achieving **102%** of the original model’s performance across nine benchmarks.
|
46 |
+
|
47 |
+
3. VisionThink achieves strong performance and efficiency by simply resizing input images to reduce visual tokens. We hope this inspires further research into **Efficient Reasoning Vision Language Models**.
|
48 |
+
|
49 |
+
## Video
|
50 |
+
<p align="center" width="85%">
|
51 |
+
<a href="https://www.youtube.com/watch?v=DGjbFbA5mBw" target="_blank">
|
52 |
+
<img src="https://raw.githubusercontent.com/dvlab-research/VisionThink/main/files/Video.png" alt="Stanford-Alpaca" style="width: 70%; min-width: 300px; display: block; margin: auto;">
|
53 |
+
</a>
|
54 |
+
</p>
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
## Citation
|
59 |
+
|
60 |
+
If you find this project useful in your research, please consider citing:
|
61 |
+
|
62 |
+
> This work is highly motivated by our previous effort on efficient VLMs, [**VisionZip**](https://github.com/dvlab-research/VisionZip), which explores token compression for faster inference.
|
63 |
+
|
64 |
+
```
|
65 |
+
@article{yang2025visionthink,
|
66 |
+
title={VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning},
|
67 |
+
author={Yang, Senqiao and Li, Junyi and Lai, Xin and Yu, Bei and Zhao, Hengshuang and Jia, Jiaya},
|
68 |
+
journal={arXiv preprint arXiv:2507.13348},
|
69 |
+
year={2025}
|
70 |
+
}
|
71 |
+
@article{yang2024visionzip,
|
72 |
+
title={VisionZip: Longer is Better but Not Necessary in Vision Language Models},
|
73 |
+
author={Yang, Senqiao and Chen, Yukang and Tian, Zhuotao and Wang, Chengyao and Li, Jingyao and Yu, Bei and Jia, Jiaya},
|
74 |
+
journal={arXiv preprint arXiv:2412.04467},
|
75 |
+
year={2024}
|
76 |
+
}
|
77 |
+
```
|
78 |
+
|
79 |
+
|