update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
metrics:
|
| 6 |
+
- accuracy
|
| 7 |
+
model-index:
|
| 8 |
+
- name: distilbert-base-uncased__subj__train-8-7
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# distilbert-base-uncased__subj__train-8-7
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 0.2766
|
| 20 |
+
- Accuracy: 0.8845
|
| 21 |
+
|
| 22 |
+
## Model description
|
| 23 |
+
|
| 24 |
+
More information needed
|
| 25 |
+
|
| 26 |
+
## Intended uses & limitations
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Training and evaluation data
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Training procedure
|
| 35 |
+
|
| 36 |
+
### Training hyperparameters
|
| 37 |
+
|
| 38 |
+
The following hyperparameters were used during training:
|
| 39 |
+
- learning_rate: 2e-05
|
| 40 |
+
- train_batch_size: 4
|
| 41 |
+
- eval_batch_size: 4
|
| 42 |
+
- seed: 42
|
| 43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 44 |
+
- lr_scheduler_type: linear
|
| 45 |
+
- num_epochs: 50
|
| 46 |
+
- mixed_precision_training: Native AMP
|
| 47 |
+
|
| 48 |
+
### Training results
|
| 49 |
+
|
| 50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 52 |
+
| 0.7044 | 1.0 | 3 | 0.6909 | 0.5 |
|
| 53 |
+
| 0.6678 | 2.0 | 6 | 0.6901 | 0.5 |
|
| 54 |
+
| 0.6336 | 3.0 | 9 | 0.6807 | 0.5 |
|
| 55 |
+
| 0.5926 | 4.0 | 12 | 0.6726 | 0.5 |
|
| 56 |
+
| 0.5221 | 5.0 | 15 | 0.6648 | 0.5 |
|
| 57 |
+
| 0.4573 | 6.0 | 18 | 0.6470 | 0.5 |
|
| 58 |
+
| 0.4177 | 7.0 | 21 | 0.6251 | 0.5 |
|
| 59 |
+
| 0.3252 | 8.0 | 24 | 0.5994 | 0.5 |
|
| 60 |
+
| 0.2831 | 9.0 | 27 | 0.5529 | 0.5 |
|
| 61 |
+
| 0.213 | 10.0 | 30 | 0.5078 | 0.75 |
|
| 62 |
+
| 0.1808 | 11.0 | 33 | 0.4521 | 1.0 |
|
| 63 |
+
| 0.1355 | 12.0 | 36 | 0.3996 | 1.0 |
|
| 64 |
+
| 0.1027 | 13.0 | 39 | 0.3557 | 1.0 |
|
| 65 |
+
| 0.0862 | 14.0 | 42 | 0.3121 | 1.0 |
|
| 66 |
+
| 0.0682 | 15.0 | 45 | 0.2828 | 1.0 |
|
| 67 |
+
| 0.0517 | 16.0 | 48 | 0.2603 | 1.0 |
|
| 68 |
+
| 0.0466 | 17.0 | 51 | 0.2412 | 1.0 |
|
| 69 |
+
| 0.038 | 18.0 | 54 | 0.2241 | 1.0 |
|
| 70 |
+
| 0.0276 | 19.0 | 57 | 0.2096 | 1.0 |
|
| 71 |
+
| 0.0246 | 20.0 | 60 | 0.1969 | 1.0 |
|
| 72 |
+
| 0.0249 | 21.0 | 63 | 0.1859 | 1.0 |
|
| 73 |
+
| 0.0201 | 22.0 | 66 | 0.1770 | 1.0 |
|
| 74 |
+
| 0.018 | 23.0 | 69 | 0.1703 | 1.0 |
|
| 75 |
+
| 0.0164 | 24.0 | 72 | 0.1670 | 1.0 |
|
| 76 |
+
| 0.0172 | 25.0 | 75 | 0.1639 | 1.0 |
|
| 77 |
+
| 0.0135 | 26.0 | 78 | 0.1604 | 1.0 |
|
| 78 |
+
| 0.014 | 27.0 | 81 | 0.1585 | 1.0 |
|
| 79 |
+
| 0.0108 | 28.0 | 84 | 0.1569 | 1.0 |
|
| 80 |
+
| 0.0116 | 29.0 | 87 | 0.1549 | 1.0 |
|
| 81 |
+
| 0.0111 | 30.0 | 90 | 0.1532 | 1.0 |
|
| 82 |
+
| 0.0113 | 31.0 | 93 | 0.1513 | 1.0 |
|
| 83 |
+
| 0.0104 | 32.0 | 96 | 0.1503 | 1.0 |
|
| 84 |
+
| 0.01 | 33.0 | 99 | 0.1490 | 1.0 |
|
| 85 |
+
| 0.0079 | 34.0 | 102 | 0.1479 | 1.0 |
|
| 86 |
+
| 0.0097 | 35.0 | 105 | 0.1466 | 1.0 |
|
| 87 |
+
| 0.0112 | 36.0 | 108 | 0.1458 | 1.0 |
|
| 88 |
+
| 0.0091 | 37.0 | 111 | 0.1457 | 1.0 |
|
| 89 |
+
| 0.0098 | 38.0 | 114 | 0.1454 | 1.0 |
|
| 90 |
+
| 0.0076 | 39.0 | 117 | 0.1451 | 1.0 |
|
| 91 |
+
| 0.0085 | 40.0 | 120 | 0.1448 | 1.0 |
|
| 92 |
+
| 0.0079 | 41.0 | 123 | 0.1445 | 1.0 |
|
| 93 |
+
| 0.0096 | 42.0 | 126 | 0.1440 | 1.0 |
|
| 94 |
+
| 0.0081 | 43.0 | 129 | 0.1430 | 1.0 |
|
| 95 |
+
| 0.0083 | 44.0 | 132 | 0.1424 | 1.0 |
|
| 96 |
+
| 0.0088 | 45.0 | 135 | 0.1418 | 1.0 |
|
| 97 |
+
| 0.0077 | 46.0 | 138 | 0.1414 | 1.0 |
|
| 98 |
+
| 0.0073 | 47.0 | 141 | 0.1413 | 1.0 |
|
| 99 |
+
| 0.0084 | 48.0 | 144 | 0.1412 | 1.0 |
|
| 100 |
+
| 0.0072 | 49.0 | 147 | 0.1411 | 1.0 |
|
| 101 |
+
| 0.0077 | 50.0 | 150 | 0.1411 | 1.0 |
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
### Framework versions
|
| 105 |
+
|
| 106 |
+
- Transformers 4.15.0
|
| 107 |
+
- Pytorch 1.10.2+cu102
|
| 108 |
+
- Datasets 1.18.2
|
| 109 |
+
- Tokenizers 0.10.3
|