ShadowProgrammer commited on
Commit
331c49c
·
1 Parent(s): ec1506e

Delete train.py

Browse files
Files changed (1) hide show
  1. train.py +0 -101
train.py DELETED
@@ -1,101 +0,0 @@
1
- import time
2
-
3
- print("Loading libraries...")
4
- start_time = time.time()
5
-
6
- import sklearn
7
- from sklearn.model_selection import train_test_split
8
- from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, mean_squared_error
9
- from sklearn.neural_network import MLPRegressor
10
- from sklearn.feature_extraction.text import CountVectorizer
11
- import matplotlib.pyplot as plt
12
- import datasets
13
- import pickle
14
-
15
- print(f"Libraries loaded in {round((time.time() - start_time) * 1000, 3)} ms.")
16
- print("Loading vectorizer...")
17
- start_time = time.time()
18
-
19
- count_vect = CountVectorizer()
20
-
21
- print(f"Vectorizer loaded in {round((time.time() - start_time) * 1000, 3)} ms.")
22
- print(f"Saving vectorizer...")
23
- start_time = time.time()
24
-
25
- # Save vectorizer
26
- pickle.dump(count_vect, open('vectorizer.pkl', 'wb'))
27
-
28
-
29
- print("Setting configuration...")
30
- start_time = time.time()
31
-
32
- # Set configuration
33
- sklearn.set_config(working_memory=4096)
34
- data_size = 100000
35
-
36
-
37
- print(f"Configuration set in {round((time.time() - start_time) * 1000, 3)} ms.")
38
- print("Loading data...")
39
- start_time = time.time()
40
-
41
- # Load data
42
- dataset = datasets.load_dataset('ucberkeley-dlab/measuring-hate-speech', 'binary')
43
- df = dataset['train'].to_pandas()
44
-
45
- print(f"Data loaded in {round((time.time() - start_time) * 1000, 3)} ms.")
46
- print(df.head())
47
-
48
- print("Preprocessing data...")
49
- start_time = time.time()
50
-
51
- # Extract text and labels
52
- X_text = df['text'][:data_size] # Assuming 'text' is the column containing the text data
53
- y_columns = ['hate_speech_score', 'sentiment', 'respect', 'insult', 'humiliate', 'status', 'dehumanize', 'violence', 'genocide', 'attack_defend', 'hatespeech']
54
- y = df[y_columns][:data_size]
55
- y = y.fillna(0)
56
-
57
- # Convert text to vectors
58
- X = count_vect.fit_transform(X_text)
59
-
60
- print(f"Data preprocessed in {round((time.time() - start_time) * 1000, 3)} ms.")
61
- print("Splitting data...")
62
- start_time = time.time()
63
- # Load data
64
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
65
-
66
- print(f"Data split in {round((time.time() - start_time) * 1000, 3)} ms.")
67
- print("Training model...")
68
- start_time = time.time()
69
-
70
- # Create MLPRegressor model
71
- mlp = MLPRegressor(hidden_layer_sizes=(256, 128, 64, 32, 16), activation='relu', max_iter=100, alpha=0.0001, learning_rate_init=0.003, solver='adam', verbose=True, tol=0.000000000001, early_stopping=False, n_iter_no_change=5000)
72
- mlp.fit(X_train, y_train)
73
-
74
- print(f"Model trained in {round((time.time() - start_time), 3)} s.")
75
- print("Evaluating model...")
76
-
77
- # Predict and score
78
- predictions = mlp.predict(X_test)
79
- print("Mean squared error: ", mean_squared_error(y_test, predictions))
80
-
81
- # Plot the loss curve
82
- plt.plot(mlp.loss_curve_)
83
- plt.title("Loss curve")
84
- plt.xlabel("Iteration")
85
- plt.ylabel("Loss")
86
- plt.show()
87
-
88
- print("Done!")
89
-
90
- # Save the model to disk
91
-
92
- filename = 'model.pkl'
93
- pickle.dump(mlp, open(filename, 'wb'))
94
-
95
- # Test the model for fun :)
96
- sentences = count_vect.fit_transform(["Fuck you you stupid nigger", "You're a piece of shit", "Awesome!", "Oh my god, I never realized that!"])
97
-
98
- predictions = mlp.predict(sentences)
99
- # Write dict of sentences and predictions
100
- values = {sentences[i]: predictions[i] for i in range(len(sentences))}
101
-