update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- imagefolder
|
| 7 |
+
model-index:
|
| 8 |
+
- name: git-base-pokemon
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# git-base-pokemon
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 0.0345
|
| 20 |
+
- Wer Score: 2.4097
|
| 21 |
+
|
| 22 |
+
## Model description
|
| 23 |
+
|
| 24 |
+
More information needed
|
| 25 |
+
|
| 26 |
+
## Intended uses & limitations
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Training and evaluation data
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Training procedure
|
| 35 |
+
|
| 36 |
+
### Training hyperparameters
|
| 37 |
+
|
| 38 |
+
The following hyperparameters were used during training:
|
| 39 |
+
- learning_rate: 5e-05
|
| 40 |
+
- train_batch_size: 32
|
| 41 |
+
- eval_batch_size: 32
|
| 42 |
+
- seed: 42
|
| 43 |
+
- gradient_accumulation_steps: 2
|
| 44 |
+
- total_train_batch_size: 64
|
| 45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 46 |
+
- lr_scheduler_type: linear
|
| 47 |
+
- num_epochs: 50
|
| 48 |
+
- mixed_precision_training: Native AMP
|
| 49 |
+
|
| 50 |
+
### Training results
|
| 51 |
+
|
| 52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|
| 53 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
| 54 |
+
| 7.3695 | 4.17 | 50 | 4.5700 | 21.4160 |
|
| 55 |
+
| 2.3984 | 8.33 | 100 | 0.4696 | 10.9249 |
|
| 56 |
+
| 0.1439 | 12.5 | 150 | 0.0305 | 1.1692 |
|
| 57 |
+
| 0.02 | 16.67 | 200 | 0.0263 | 1.5229 |
|
| 58 |
+
| 0.0084 | 20.83 | 250 | 0.0295 | 2.6539 |
|
| 59 |
+
| 0.003 | 25.0 | 300 | 0.0324 | 3.2125 |
|
| 60 |
+
| 0.0018 | 29.17 | 350 | 0.0329 | 2.6628 |
|
| 61 |
+
| 0.0014 | 33.33 | 400 | 0.0336 | 2.5407 |
|
| 62 |
+
| 0.0013 | 37.5 | 450 | 0.0338 | 2.4008 |
|
| 63 |
+
| 0.0011 | 41.67 | 500 | 0.0344 | 2.5115 |
|
| 64 |
+
| 0.0011 | 45.83 | 550 | 0.0344 | 2.3766 |
|
| 65 |
+
| 0.0011 | 50.0 | 600 | 0.0345 | 2.4097 |
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
### Framework versions
|
| 69 |
+
|
| 70 |
+
- Transformers 4.27.4
|
| 71 |
+
- Pytorch 1.13.1+cu116
|
| 72 |
+
- Datasets 2.11.0
|
| 73 |
+
- Tokenizers 0.13.2
|