LLaVA-UHD-v3 / configuration_llava_uhd_v3.py
Sishxo's picture
Upload 12 files
8f993ed verified
from sympy import false
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
class LlavaUHDV3VisionConfig(PretrainedConfig):
model_type = "llava_uhd_v3"
base_config_key = "vision_config"
def __init__(
self,
patch_size: int = 14,
init_pos_emb_height: int = 64,
init_pos_emb_width: int = 64,
num_attention_heads: int = 16,
num_hidden_layers: int = 27,
hidden_size: int = 1152,
intermediate_size: int = 4304,
merger_layer_index: list = None,
merging_method: str = None,
**kwargs,
):
super().__init__(**kwargs)
self.patch_size = patch_size
# Positional embedding config
self.init_pos_emb_height = init_pos_emb_height
self.init_pos_emb_width = init_pos_emb_width
# Transformer config
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
# Merging config
self.merger_layer_index = merger_layer_index
self.merging_method = merging_method
self.attn_implementation = "flash_attention_2"
class LlavaUHDV3TextConfig(PretrainedConfig):
model_type = "llava_uhd_v3"
base_config_key = "text_config"
def __init__(
self,
vocab_size=152064,
hidden_size=3584,
intermediate_size=18944,
num_hidden_layers=28,
num_attention_heads=28,
num_key_value_heads=4,
hidden_act="silu",
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=1000000.0,
rope_scaling=None,
use_sliding_window=False,
sliding_window=131072,
max_window_layers=28,
layer_types=None,
attention_dropout=0.0,
**kwargs,
):
self.attn_implementation = "flash_attention_2"
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if self.use_sliding_window else None
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.layer_types = layer_types
if self.layer_types is None:
self.layer_types = [
"sliding_attention"
if self.sliding_window is not None and i >= self.max_window_layers
else "full_attention"
for i in range(self.num_hidden_layers)
]
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class LlavaUHDV3Config(PretrainedConfig):
model_type = "llava_uhd_v3"
sub_configs = {"vision_config": LlavaUHDV3VisionConfig, "text_config": LlavaUHDV3TextConfig}
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
text_config=None,
vision_config=None,
**kwargs,
):
if isinstance(vision_config, dict):
self.vision_config = self.sub_configs["vision_config"](**vision_config)
elif vision_config is None:
self.vision_config = self.sub_configs["vision_config"]()
if isinstance(text_config, dict):
self.text_config = self.sub_configs["text_config"](**text_config)
elif text_config is None:
self.text_config = self.sub_configs["text_config"]()
super().__init__(**kwargs)
__all__ = ["LlavaUHDV3Config"]