|
|
from sympy import false |
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
|
|
|
class LlavaUHDV3VisionConfig(PretrainedConfig): |
|
|
model_type = "llava_uhd_v3" |
|
|
base_config_key = "vision_config" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
patch_size: int = 14, |
|
|
init_pos_emb_height: int = 64, |
|
|
init_pos_emb_width: int = 64, |
|
|
num_attention_heads: int = 16, |
|
|
num_hidden_layers: int = 27, |
|
|
hidden_size: int = 1152, |
|
|
intermediate_size: int = 4304, |
|
|
merger_layer_index: list = None, |
|
|
merging_method: str = None, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
self.patch_size = patch_size |
|
|
|
|
|
self.init_pos_emb_height = init_pos_emb_height |
|
|
self.init_pos_emb_width = init_pos_emb_width |
|
|
|
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
|
|
|
self.merger_layer_index = merger_layer_index |
|
|
self.merging_method = merging_method |
|
|
self.attn_implementation = "flash_attention_2" |
|
|
|
|
|
class LlavaUHDV3TextConfig(PretrainedConfig): |
|
|
model_type = "llava_uhd_v3" |
|
|
base_config_key = "text_config" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=152064, |
|
|
hidden_size=3584, |
|
|
intermediate_size=18944, |
|
|
num_hidden_layers=28, |
|
|
num_attention_heads=28, |
|
|
num_key_value_heads=4, |
|
|
hidden_act="silu", |
|
|
max_position_embeddings=131072, |
|
|
initializer_range=0.02, |
|
|
rms_norm_eps=1e-6, |
|
|
use_cache=True, |
|
|
tie_word_embeddings=False, |
|
|
rope_theta=1000000.0, |
|
|
rope_scaling=None, |
|
|
use_sliding_window=False, |
|
|
sliding_window=131072, |
|
|
max_window_layers=28, |
|
|
layer_types=None, |
|
|
attention_dropout=0.0, |
|
|
**kwargs, |
|
|
): |
|
|
self.attn_implementation = "flash_attention_2" |
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.use_sliding_window = use_sliding_window |
|
|
self.sliding_window = sliding_window if self.use_sliding_window else None |
|
|
self.max_window_layers = max_window_layers |
|
|
|
|
|
|
|
|
if num_key_value_heads is None: |
|
|
num_key_value_heads = num_attention_heads |
|
|
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
self.attention_dropout = attention_dropout |
|
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
|
rope_config_validation(self) |
|
|
|
|
|
self.layer_types = layer_types |
|
|
if self.layer_types is None: |
|
|
self.layer_types = [ |
|
|
"sliding_attention" |
|
|
if self.sliding_window is not None and i >= self.max_window_layers |
|
|
else "full_attention" |
|
|
for i in range(self.num_hidden_layers) |
|
|
] |
|
|
|
|
|
super().__init__( |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
class LlavaUHDV3Config(PretrainedConfig): |
|
|
model_type = "llava_uhd_v3" |
|
|
sub_configs = {"vision_config": LlavaUHDV3VisionConfig, "text_config": LlavaUHDV3TextConfig} |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
text_config=None, |
|
|
vision_config=None, |
|
|
**kwargs, |
|
|
): |
|
|
if isinstance(vision_config, dict): |
|
|
self.vision_config = self.sub_configs["vision_config"](**vision_config) |
|
|
elif vision_config is None: |
|
|
self.vision_config = self.sub_configs["vision_config"]() |
|
|
|
|
|
if isinstance(text_config, dict): |
|
|
self.text_config = self.sub_configs["text_config"](**text_config) |
|
|
elif text_config is None: |
|
|
self.text_config = self.sub_configs["text_config"]() |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
__all__ = ["LlavaUHDV3Config"] |