Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
2 |
+
model = UNet3D().to(device)
|
3 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
4 |
+
|
5 |
+
for epoch in range(250):
|
6 |
+
for batch in tqdm(dataloader):
|
7 |
+
video = batch["video"].to(device)
|
8 |
+
text = batch["text"].to(device)
|
9 |
+
|
10 |
+
|
11 |
+
t = torch.randint(0, 1000, (video.shape[0], 1)).to(device)
|
12 |
+
noise = torch.randn_like(video)
|
13 |
+
alpha_t = (1 - t/1000).view(-1, 1, 1, 1, 1)
|
14 |
+
noisy_video = torch.sqrt(alpha_t) * video + torch.sqrt(1 - alpha_t) * noise
|
15 |
+
|
16 |
+
|
17 |
+
pred_noise = model(noisy_video, t/1000, text)
|
18 |
+
loss = F.mse_loss(pred_noise, noise)
|
19 |
+
|
20 |
+
optimizer.zero_grad()
|
21 |
+
loss.backward()
|
22 |
+
optimizer.step()
|
23 |
+
|
24 |
+
print(f"Epoch {epoch}, Loss: {loss.item():.4f}")
|