Create dataloader.py
Browse files- dataloader.py +56 -0
dataloader.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from datasets import load_dataset
|
3 |
+
from torch.utils.data import DataLoader
|
4 |
+
from transformers import BertTokenizer
|
5 |
+
import decord
|
6 |
+
import numpy as np
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
|
10 |
+
FRAMES = 400
|
11 |
+
H, W = 780, 780
|
12 |
+
BATCH_SIZE = 8
|
13 |
+
TEXT_MAX_LEN = 32
|
14 |
+
|
15 |
+
|
16 |
+
dataset = load_dataset("minh132/pexels-videos", split="train")
|
17 |
+
|
18 |
+
|
19 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
20 |
+
|
21 |
+
|
22 |
+
class VideoDataset(torch.utils.data.Dataset):
|
23 |
+
def __init__(self, dataset):
|
24 |
+
self.dataset = dataset
|
25 |
+
self.decord_ctx = decord.cpu(0) # CPU decoding
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return len(self.dataset)
|
29 |
+
|
30 |
+
def __getitem__(self, idx):
|
31 |
+
item = self.dataset[idx]
|
32 |
+
|
33 |
+
|
34 |
+
vr = decord.VideoReader(item["video_path"], ctx=self.decord_ctx)
|
35 |
+
frame_indices = np.linspace(0, len(vr)-1, FRAMES, dtype=int)
|
36 |
+
video = vr.get_batch(frame_indices).numpy() # (FRAMES, H, W, 3)
|
37 |
+
video = torch.from_numpy(video).permute(3, 0, 1, 2).float() # (3, FRAMES, H, W)
|
38 |
+
|
39 |
+
|
40 |
+
video = F.interpolate(video, size=(H, W), mode="bilinear")
|
41 |
+
video = (video / 255.0) * 2 - 1 # [-1, 1]
|
42 |
+
|
43 |
+
|
44 |
+
text = tokenizer(
|
45 |
+
item["caption"],
|
46 |
+
padding="max_length",
|
47 |
+
truncation=True,
|
48 |
+
max_length=TEXT_MAX_LEN,
|
49 |
+
return_tensors="pt"
|
50 |
+
).input_ids.squeeze(0)
|
51 |
+
|
52 |
+
return {"video": video, "text": text}
|
53 |
+
|
54 |
+
|
55 |
+
dataset = VideoDataset(dataset)
|
56 |
+
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
|