File size: 8,276 Bytes
bac0036 3485ad2 bac0036 f5ae779 bac0036 3a9d437 bac0036 5dac64b bac0036 d36cd65 9afb830 d36cd65 bac0036 5dac64b bac0036 69c997a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
---
license: mit
library_name: transformers
pipeline_tag: image-text-to-text
---
# Skywork-R1V2-38B-AWQ
<div align="center">
<img src="skywork-logo.png" alt="Introduction Image" width="500" height="400">
</div>
## ๐ [R1V2 Report](https://arxiv.org/abs/2504.16656) | ๐ป [GitHub](https://github.com/SkyworkAI/Skywork-R1V) | ๐ [ModelScope](https://modelscope.cn/models/Skywork/Skywork-R1V2-38B)
<div align="center">
[](https://github.com/SkyworkAI/Skywork-R1V/stargazers)[](https://github.com/SkyworkAI/Skywork-R1V/fork)
</div>
## Evaluation
<div align="center">
<b>Comprehensive performance comparison across text and multimodal reasoning benchmarks.</b>
</div>
<table align="center" border="1" style="border-collapse: collapse; width: 100%;">
<thead>
<tr>
<th>Model</th>
<th align="center">MMMU</th>
<th align="center">MathVista</th>
<th align="center">MathVision</th>
<th align="center">Olympiad Bench</th>
<th align="center">AIME 24</th>
<th align="center">LiveCode bench</th>
<th align="center">Live Bench</th>
<th align="center">IFEVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="9" align="center"><i>Proprietary Models</i></td>
</tr>
<tr>
<td>Claude-3.5-Sonnet</td>
<td align="center">70.4</td>
<td align="center">67.7</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td>Gemini-2-Flash</td>
<td align="center">70.7</td>
<td align="center">73.1</td>
<td align="center">41.3</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td>Kimi-k1.5-longcot</td>
<td align="center">70.0</td>
<td align="center">74.9</td>
<td align="center">53.3</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td>OpenAI-o1</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">74.3</td>
<td align="center">63.4</td>
<td align="center">72.2</td>
<td align="center">-</td>
</tr>
<tr>
<td>OpenAI-o4-mini</td>
<td align="center"><b>81.6</b></td>
<td align="center"><b>84.3</b></td>
<td align="center"><b>58.0</b></td>
<td align="center">-</td>
<td align="center"><b>93.4</b></td>
<td align="center"><b>74.6</b></td>
<td align="center"><b>78.1</b></td>
<td align="center">-</td>
</tr>
<tr>
<td colspan="9" align="center"><i>Open-Source Models</i></td>
</tr>
<tr>
<td>Skywork-R1V1</td>
<td align="center">68.0</td>
<td align="center">67.0</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">72.0</td>
<td align="center">57.2</td>
<td align="center">54.6</td>
<td align="center">72.5</td>
</tr>
<tr>
<td>DeepseekR1-671B</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td
>
<td align="center"><b>79.8</b></td>
<td align="center"><b>65.9</b></td>
<td align="center">71.6</td>
<td align="center"><b>83.3</b></td>
</tr>
<tr>
<td>InternVL3-38B</td>
<td align="center">70.1</td>
<td align="center">75.1</td>
<td align="center">34.2</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td>Qwen2.5-VL-72B</td>
<td align="center">70.2</td>
<td align="center">74.8</td>
<td align="center">38.1</td>
<td align="center">40.4</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td>QvQ-Preview-72B</td>
<td align="center">70.3</td>
<td align="center">71.4</td>
<td align="center">35.9</td>
<td align="center">33.2</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td>Skywork-R1V2</td>
<td align="center"><b>73.6</b></td>
<td align="center">74.0</td>
<td align="center"><b>49.0</b></td>
<td align="center"><b>62.6</b></td>
<td align="center">78.9</td>
<td align="center">63.6</td>
<td align="center"><b>73.2</b></td>
<td align="center">82.9</td>
</tr>
<tr>
<td>Skywork-R1V2-AWQ</td>
<td align="center">64.4</td>
<td align="center">64.8</td>
<td align="center">42.9</td>
<td align="center">54.8</td>
<td align="center">77.3</td>
<td align="center">55.7</td>
<td align="center">64.1</td>
<td align="center">72.5</td>
</tr>
</tbody>
</table>
## Usage
You can use the quantized model with different inference frameworks:
### Using VLLM
#### Python API
```python
import os
from vllm import LLM, SamplingParams
from vllm.entrypoints.chat_utils import load_chat_template
model_name = "Skywork/Skywork-R1V2-38B-AWQ" # or local path
llm = LLM(model_name,
dtype='float16',
quantization="awq",
gpu_memory_utilization=0.9,
max_model_len=4096,
trust_remote_code=True,
)
# Add your inference code here
```
#### OpenAI-compatible API Server
```bash
MODEL_ID="Skywork/Skywork-R1V2-38B-AWQ" # or local path
CUDA_VISIBLE_DEVICES=0 \
python -m vllm.entrypoints.openai.api_server \
--model $MODEL_ID \
--dtype float16 \
--quantization awq \
--port 23334 \
--max-model-len 12000 \
--gpu-memory-utilization 0.9 \
--trust-remote-code
```
### Using LMDeploy
```python
import os
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model_path = "Skywork/Skywork-R1V2-38B-AWQ" # or local path
engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75)
chat_template_config = ChatTemplateConfig(model_name=model_path)
pipe = pipeline(model_path,
backend_config=engine_config,
chat_template_config=chat_template_config,
)
# Example: Multimodal inference
image = load_image('table.jpg')
response = pipe(('Describe this image?', image))
print(response.text)
```
## Hardware Requirements
The AWQ quantization reduces the memory footprint compared to the original FP16 model. We recommend:
- At least one GPU with 30GB+ VRAM for inference
- For optimal performance with longer contexts, 40GB+ VRAM is recommended
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{peng2025skyworkr1vpioneeringmultimodal,
title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
author={Yi Peng and Chris and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
year={2025},
eprint={2504.05599},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.05599},
}
```
```bibtex
@misc{chris2025skyworkr1v2multimodalhybrid,
title={Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning},
author={Chris and Yichen Wei and Yi Peng and Xiaokun Wang and Weijie Qiu and Wei Shen and Tianyidan Xie and Jiangbo Pei and Jianhao Zhang and Yunzhuo Hao and Xuchen Song and Yang Liu and Yahui Zhou},
year={2025},
eprint={2504.16656},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.16656},
}
```
|