Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- .ipynb_checkpoints/config-checkpoint.json +211 -0
- added_tokens.json +33 -0
- config.json +211 -0
- configuration_intern_vit.py +120 -0
- configuration_internlm2.py +150 -0
- configuration_internvl_chat.py +112 -0
- configuration_skywork_chat.py +92 -0
- configuration_skywork_lm2.py +139 -0
- configuration_skywork_vit.py +101 -0
- conversation.py +416 -0
- generation_config.json +8 -0
- inputs_stats.pth +3 -0
- merges.txt +0 -0
- modeling_intern_vit.py +430 -0
- modeling_internlm2.py +1415 -0
- modeling_internvl_chat.py +387 -0
- modeling_skywork_chat.py +354 -0
- modeling_skywork_lm2.py +1403 -0
- modeling_skywork_vit.py +424 -0
- outputs_stats.pth +3 -0
- pytorch_model-00001-of-00016.bin +3 -0
- pytorch_model-00002-of-00016.bin +3 -0
- pytorch_model-00003-of-00016.bin +3 -0
- pytorch_model-00004-of-00016.bin +3 -0
- pytorch_model-00005-of-00016.bin +3 -0
- pytorch_model-00006-of-00016.bin +3 -0
- pytorch_model-00007-of-00016.bin +3 -0
- pytorch_model-00008-of-00016.bin +3 -0
- pytorch_model-00009-of-00016.bin +3 -0
- pytorch_model-00010-of-00016.bin +3 -0
- pytorch_model-00011-of-00016.bin +3 -0
- pytorch_model-00012-of-00016.bin +3 -0
- pytorch_model-00013-of-00016.bin +3 -0
- pytorch_model-00014-of-00016.bin +3 -0
- pytorch_model-00015-of-00016.bin +3 -0
- pytorch_model-00016-of-00016.bin +3 -0
- pytorch_model.bin.index.json +0 -0
- special_tokens_map.json +40 -0
- tokenization_internlm2.py +235 -0
- tokenization_internlm2_fast.py +211 -0
- tokenizer.json +3 -0
- tokenizer_config.json +290 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/config-checkpoint.json
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": null,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"SkyworkChatModel"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_skywork_chat.SkyworkChatConfig",
|
| 8 |
+
"AutoModel": "modeling_skywork_chat.SkyworkChatModel",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_skywork_chat.SkyworkChatModel"
|
| 10 |
+
},
|
| 11 |
+
"downsample_ratio": 0.5,
|
| 12 |
+
"dynamic_image_size": true,
|
| 13 |
+
"force_image_size": 448,
|
| 14 |
+
"hidden_size": 5120,
|
| 15 |
+
"llm_config": {
|
| 16 |
+
"_attn_implementation_autoset": true,
|
| 17 |
+
"_name_or_path": "",
|
| 18 |
+
"add_cross_attention": false,
|
| 19 |
+
"architectures": [
|
| 20 |
+
"Qwen2ForCausalLM"
|
| 21 |
+
],
|
| 22 |
+
"attention_dropout": 0.0,
|
| 23 |
+
"attn_implementation": "flash_attention_2",
|
| 24 |
+
"auto_map": {
|
| 25 |
+
"AutoConfig": "configuration_skywork_chat.SkyworkChatConfig",
|
| 26 |
+
"AutoModel": "modeling_skywork_chat.SkyworkChatModel",
|
| 27 |
+
"AutoModelForCausalLM": "modeling_skywork_chat.SkyworkChatModel",
|
| 28 |
+
"AutoModelForSequenceClassification": "modeling_skywork_lm2.SkyworkLM2ForSequenceClassification"
|
| 29 |
+
},
|
| 30 |
+
"bad_words_ids": null,
|
| 31 |
+
"begin_suppress_tokens": null,
|
| 32 |
+
"bos_token_id": 151643,
|
| 33 |
+
"chunk_size_feed_forward": 0,
|
| 34 |
+
"cross_attention_hidden_size": null,
|
| 35 |
+
"decoder_start_token_id": null,
|
| 36 |
+
"diversity_penalty": 0.0,
|
| 37 |
+
"do_sample": false,
|
| 38 |
+
"early_stopping": false,
|
| 39 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 40 |
+
"eos_token_id": 151643,
|
| 41 |
+
"exponential_decay_length_penalty": null,
|
| 42 |
+
"finetuning_task": null,
|
| 43 |
+
"forced_bos_token_id": null,
|
| 44 |
+
"forced_eos_token_id": null,
|
| 45 |
+
"hidden_act": "silu",
|
| 46 |
+
"hidden_size": 5120,
|
| 47 |
+
"id2label": {
|
| 48 |
+
"0": "LABEL_0",
|
| 49 |
+
"1": "LABEL_1"
|
| 50 |
+
},
|
| 51 |
+
"initializer_range": 0.02,
|
| 52 |
+
"intermediate_size": 27648,
|
| 53 |
+
"is_decoder": false,
|
| 54 |
+
"is_encoder_decoder": false,
|
| 55 |
+
"label2id": {
|
| 56 |
+
"LABEL_0": 0,
|
| 57 |
+
"LABEL_1": 1
|
| 58 |
+
},
|
| 59 |
+
"length_penalty": 1.0,
|
| 60 |
+
"max_length": 20,
|
| 61 |
+
"max_position_embeddings": 40960,
|
| 62 |
+
"max_window_layers": 64,
|
| 63 |
+
"min_length": 0,
|
| 64 |
+
"model_type": "qwen2",
|
| 65 |
+
"no_repeat_ngram_size": 0,
|
| 66 |
+
"num_attention_heads": 40,
|
| 67 |
+
"num_beam_groups": 1,
|
| 68 |
+
"num_beams": 1,
|
| 69 |
+
"num_hidden_layers": 64,
|
| 70 |
+
"num_key_value_heads": 8,
|
| 71 |
+
"num_return_sequences": 1,
|
| 72 |
+
"output_attentions": false,
|
| 73 |
+
"output_hidden_states": false,
|
| 74 |
+
"output_scores": false,
|
| 75 |
+
"pad_token_id": null,
|
| 76 |
+
"prefix": null,
|
| 77 |
+
"problem_type": null,
|
| 78 |
+
"pruned_heads": {},
|
| 79 |
+
"quantization_config": {
|
| 80 |
+
"bits": 4,
|
| 81 |
+
"group_size": 128,
|
| 82 |
+
"quant_method": "awq",
|
| 83 |
+
"version": "gemm",
|
| 84 |
+
"zero_point": true
|
| 85 |
+
},
|
| 86 |
+
"remove_invalid_values": false,
|
| 87 |
+
"repetition_penalty": 1.0,
|
| 88 |
+
"return_dict": true,
|
| 89 |
+
"return_dict_in_generate": false,
|
| 90 |
+
"rms_norm_eps": 1e-05,
|
| 91 |
+
"rope_scaling": null,
|
| 92 |
+
"rope_theta": 1000000.0,
|
| 93 |
+
"sep_token_id": null,
|
| 94 |
+
"sliding_window": null,
|
| 95 |
+
"suppress_tokens": null,
|
| 96 |
+
"task_specific_params": null,
|
| 97 |
+
"temperature": 1.0,
|
| 98 |
+
"tf_legacy_loss": false,
|
| 99 |
+
"tie_encoder_decoder": false,
|
| 100 |
+
"tie_word_embeddings": false,
|
| 101 |
+
"tokenizer_class": null,
|
| 102 |
+
"top_k": 50,
|
| 103 |
+
"top_p": 1.0,
|
| 104 |
+
"torch_dtype": "bfloat16",
|
| 105 |
+
"torchscript": false,
|
| 106 |
+
"transformers_version": "4.50.0",
|
| 107 |
+
"typical_p": 1.0,
|
| 108 |
+
"use_bfloat16": false,
|
| 109 |
+
"use_cache": false,
|
| 110 |
+
"use_sliding_window": false,
|
| 111 |
+
"vocab_size": 152064
|
| 112 |
+
},
|
| 113 |
+
"max_dynamic_patch": 12,
|
| 114 |
+
"min_dynamic_patch": 1,
|
| 115 |
+
"model_type": "skywork_chat",
|
| 116 |
+
"pad2square": false,
|
| 117 |
+
"ps_version": "v2",
|
| 118 |
+
"select_layer": -1,
|
| 119 |
+
"template": "skywork-r1v-chat",
|
| 120 |
+
"tie_word_embeddings": false,
|
| 121 |
+
"torch_dtype": "float16",
|
| 122 |
+
"transformers_version": null,
|
| 123 |
+
"use_backbone_lora": 0,
|
| 124 |
+
"use_llm_lora": 0,
|
| 125 |
+
"use_thumbnail": true,
|
| 126 |
+
"vision_config": {
|
| 127 |
+
"_attn_implementation_autoset": true,
|
| 128 |
+
"_name_or_path": "",
|
| 129 |
+
"add_cross_attention": false,
|
| 130 |
+
"architectures": [
|
| 131 |
+
"InternVisionModel"
|
| 132 |
+
],
|
| 133 |
+
"attention_dropout": 0.0,
|
| 134 |
+
"bad_words_ids": null,
|
| 135 |
+
"begin_suppress_tokens": null,
|
| 136 |
+
"bos_token_id": null,
|
| 137 |
+
"chunk_size_feed_forward": 0,
|
| 138 |
+
"cross_attention_hidden_size": null,
|
| 139 |
+
"decoder_start_token_id": null,
|
| 140 |
+
"diversity_penalty": 0.0,
|
| 141 |
+
"do_sample": false,
|
| 142 |
+
"drop_path_rate": 0.4,
|
| 143 |
+
"dropout": 0.0,
|
| 144 |
+
"early_stopping": false,
|
| 145 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 146 |
+
"eos_token_id": null,
|
| 147 |
+
"exponential_decay_length_penalty": null,
|
| 148 |
+
"finetuning_task": null,
|
| 149 |
+
"forced_bos_token_id": null,
|
| 150 |
+
"forced_eos_token_id": null,
|
| 151 |
+
"hidden_act": "gelu",
|
| 152 |
+
"hidden_size": 3200,
|
| 153 |
+
"id2label": {
|
| 154 |
+
"0": "LABEL_0",
|
| 155 |
+
"1": "LABEL_1"
|
| 156 |
+
},
|
| 157 |
+
"image_size": 448,
|
| 158 |
+
"initializer_factor": 0.1,
|
| 159 |
+
"initializer_range": 1e-10,
|
| 160 |
+
"intermediate_size": 12800,
|
| 161 |
+
"is_decoder": false,
|
| 162 |
+
"is_encoder_decoder": false,
|
| 163 |
+
"label2id": {
|
| 164 |
+
"LABEL_0": 0,
|
| 165 |
+
"LABEL_1": 1
|
| 166 |
+
},
|
| 167 |
+
"layer_norm_eps": 1e-06,
|
| 168 |
+
"length_penalty": 1.0,
|
| 169 |
+
"max_length": 20,
|
| 170 |
+
"min_length": 0,
|
| 171 |
+
"model_type": "",
|
| 172 |
+
"no_repeat_ngram_size": 0,
|
| 173 |
+
"norm_type": "rms_norm",
|
| 174 |
+
"num_attention_heads": 25,
|
| 175 |
+
"num_beam_groups": 1,
|
| 176 |
+
"num_beams": 1,
|
| 177 |
+
"num_channels": 3,
|
| 178 |
+
"num_hidden_layers": 45,
|
| 179 |
+
"num_return_sequences": 1,
|
| 180 |
+
"output_attentions": false,
|
| 181 |
+
"output_hidden_states": false,
|
| 182 |
+
"output_scores": false,
|
| 183 |
+
"pad_token_id": null,
|
| 184 |
+
"patch_size": 14,
|
| 185 |
+
"prefix": null,
|
| 186 |
+
"problem_type": null,
|
| 187 |
+
"pruned_heads": {},
|
| 188 |
+
"qk_normalization": true,
|
| 189 |
+
"qkv_bias": false,
|
| 190 |
+
"remove_invalid_values": false,
|
| 191 |
+
"repetition_penalty": 1.0,
|
| 192 |
+
"return_dict": true,
|
| 193 |
+
"return_dict_in_generate": false,
|
| 194 |
+
"sep_token_id": null,
|
| 195 |
+
"suppress_tokens": null,
|
| 196 |
+
"task_specific_params": null,
|
| 197 |
+
"temperature": 1.0,
|
| 198 |
+
"tf_legacy_loss": false,
|
| 199 |
+
"tie_encoder_decoder": false,
|
| 200 |
+
"tie_word_embeddings": true,
|
| 201 |
+
"tokenizer_class": null,
|
| 202 |
+
"top_k": 50,
|
| 203 |
+
"top_p": 1.0,
|
| 204 |
+
"torch_dtype": "bfloat16",
|
| 205 |
+
"torchscript": false,
|
| 206 |
+
"transformers_version": "4.50.0",
|
| 207 |
+
"typical_p": 1.0,
|
| 208 |
+
"use_bfloat16": true,
|
| 209 |
+
"use_flash_attn": true
|
| 210 |
+
}
|
| 211 |
+
}
|
added_tokens.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</box>": 151673,
|
| 3 |
+
"</img>": 151666,
|
| 4 |
+
"</quad>": 151669,
|
| 5 |
+
"</ref>": 151671,
|
| 6 |
+
"</tool_call>": 151658,
|
| 7 |
+
"<IMG_CONTEXT>": 151667,
|
| 8 |
+
"<box>": 151672,
|
| 9 |
+
"<img>": 151665,
|
| 10 |
+
"<quad>": 151668,
|
| 11 |
+
"<ref>": 151670,
|
| 12 |
+
"<tool_call>": 151657,
|
| 13 |
+
"<|box_end|>": 151649,
|
| 14 |
+
"<|box_start|>": 151648,
|
| 15 |
+
"<|endoftext|>": 151643,
|
| 16 |
+
"<|file_sep|>": 151664,
|
| 17 |
+
"<|fim_middle|>": 151660,
|
| 18 |
+
"<|fim_pad|>": 151662,
|
| 19 |
+
"<|fim_prefix|>": 151659,
|
| 20 |
+
"<|fim_suffix|>": 151661,
|
| 21 |
+
"<|im_end|>": 151645,
|
| 22 |
+
"<|im_start|>": 151644,
|
| 23 |
+
"<|image_pad|>": 151655,
|
| 24 |
+
"<|object_ref_end|>": 151647,
|
| 25 |
+
"<|object_ref_start|>": 151646,
|
| 26 |
+
"<|quad_end|>": 151651,
|
| 27 |
+
"<|quad_start|>": 151650,
|
| 28 |
+
"<|repo_name|>": 151663,
|
| 29 |
+
"<|video_pad|>": 151656,
|
| 30 |
+
"<|vision_end|>": 151653,
|
| 31 |
+
"<|vision_pad|>": 151654,
|
| 32 |
+
"<|vision_start|>": 151652
|
| 33 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": null,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"InternVLChatModel"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_skywork_chat.SkyworkChatConfig",
|
| 8 |
+
"AutoModel": "modeling_skywork_chat.SkyworkChatModel",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_skywork_chat.SkyworkChatModel"
|
| 10 |
+
},
|
| 11 |
+
"downsample_ratio": 0.5,
|
| 12 |
+
"dynamic_image_size": true,
|
| 13 |
+
"force_image_size": 448,
|
| 14 |
+
"hidden_size": 5120,
|
| 15 |
+
"llm_config": {
|
| 16 |
+
"_attn_implementation_autoset": true,
|
| 17 |
+
"_name_or_path": "",
|
| 18 |
+
"add_cross_attention": false,
|
| 19 |
+
"architectures": [
|
| 20 |
+
"Qwen2ForCausalLM"
|
| 21 |
+
],
|
| 22 |
+
"attention_dropout": 0.0,
|
| 23 |
+
"attn_implementation": "flash_attention_2",
|
| 24 |
+
"auto_map": {
|
| 25 |
+
"AutoConfig": "configuration_skywork_chat.SkyworkChatConfig",
|
| 26 |
+
"AutoModel": "modeling_skywork_chat.SkyworkChatModel",
|
| 27 |
+
"AutoModelForCausalLM": "modeling_skywork_chat.SkyworkChatModel",
|
| 28 |
+
"AutoModelForSequenceClassification": "modeling_skywork_lm2.SkyworkLM2ForSequenceClassification"
|
| 29 |
+
},
|
| 30 |
+
"bad_words_ids": null,
|
| 31 |
+
"begin_suppress_tokens": null,
|
| 32 |
+
"bos_token_id": 151643,
|
| 33 |
+
"chunk_size_feed_forward": 0,
|
| 34 |
+
"cross_attention_hidden_size": null,
|
| 35 |
+
"decoder_start_token_id": null,
|
| 36 |
+
"diversity_penalty": 0.0,
|
| 37 |
+
"do_sample": false,
|
| 38 |
+
"early_stopping": false,
|
| 39 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 40 |
+
"eos_token_id": 151643,
|
| 41 |
+
"exponential_decay_length_penalty": null,
|
| 42 |
+
"finetuning_task": null,
|
| 43 |
+
"forced_bos_token_id": null,
|
| 44 |
+
"forced_eos_token_id": null,
|
| 45 |
+
"hidden_act": "silu",
|
| 46 |
+
"hidden_size": 5120,
|
| 47 |
+
"id2label": {
|
| 48 |
+
"0": "LABEL_0",
|
| 49 |
+
"1": "LABEL_1"
|
| 50 |
+
},
|
| 51 |
+
"initializer_range": 0.02,
|
| 52 |
+
"intermediate_size": 27648,
|
| 53 |
+
"is_decoder": false,
|
| 54 |
+
"is_encoder_decoder": false,
|
| 55 |
+
"label2id": {
|
| 56 |
+
"LABEL_0": 0,
|
| 57 |
+
"LABEL_1": 1
|
| 58 |
+
},
|
| 59 |
+
"length_penalty": 1.0,
|
| 60 |
+
"max_length": 20,
|
| 61 |
+
"max_position_embeddings": 40960,
|
| 62 |
+
"max_window_layers": 64,
|
| 63 |
+
"min_length": 0,
|
| 64 |
+
"model_type": "qwen2",
|
| 65 |
+
"no_repeat_ngram_size": 0,
|
| 66 |
+
"num_attention_heads": 40,
|
| 67 |
+
"num_beam_groups": 1,
|
| 68 |
+
"num_beams": 1,
|
| 69 |
+
"num_hidden_layers": 64,
|
| 70 |
+
"num_key_value_heads": 8,
|
| 71 |
+
"num_return_sequences": 1,
|
| 72 |
+
"output_attentions": false,
|
| 73 |
+
"output_hidden_states": false,
|
| 74 |
+
"output_scores": false,
|
| 75 |
+
"pad_token_id": null,
|
| 76 |
+
"prefix": null,
|
| 77 |
+
"problem_type": null,
|
| 78 |
+
"pruned_heads": {},
|
| 79 |
+
"quantization_config": {
|
| 80 |
+
"bits": 4,
|
| 81 |
+
"group_size": 128,
|
| 82 |
+
"quant_method": "awq",
|
| 83 |
+
"version": "gemm",
|
| 84 |
+
"zero_point": true
|
| 85 |
+
},
|
| 86 |
+
"remove_invalid_values": false,
|
| 87 |
+
"repetition_penalty": 1.0,
|
| 88 |
+
"return_dict": true,
|
| 89 |
+
"return_dict_in_generate": false,
|
| 90 |
+
"rms_norm_eps": 1e-05,
|
| 91 |
+
"rope_scaling": null,
|
| 92 |
+
"rope_theta": 1000000.0,
|
| 93 |
+
"sep_token_id": null,
|
| 94 |
+
"sliding_window": null,
|
| 95 |
+
"suppress_tokens": null,
|
| 96 |
+
"task_specific_params": null,
|
| 97 |
+
"temperature": 1.0,
|
| 98 |
+
"tf_legacy_loss": false,
|
| 99 |
+
"tie_encoder_decoder": false,
|
| 100 |
+
"tie_word_embeddings": false,
|
| 101 |
+
"tokenizer_class": null,
|
| 102 |
+
"top_k": 50,
|
| 103 |
+
"top_p": 1.0,
|
| 104 |
+
"torch_dtype": "bfloat16",
|
| 105 |
+
"torchscript": false,
|
| 106 |
+
"transformers_version": "4.50.0",
|
| 107 |
+
"typical_p": 1.0,
|
| 108 |
+
"use_bfloat16": false,
|
| 109 |
+
"use_cache": false,
|
| 110 |
+
"use_sliding_window": false,
|
| 111 |
+
"vocab_size": 152064
|
| 112 |
+
},
|
| 113 |
+
"max_dynamic_patch": 12,
|
| 114 |
+
"min_dynamic_patch": 1,
|
| 115 |
+
"model_type": "internvl_chat",
|
| 116 |
+
"pad2square": false,
|
| 117 |
+
"ps_version": "v2",
|
| 118 |
+
"select_layer": -1,
|
| 119 |
+
"template": "skywork-r1v-chat",
|
| 120 |
+
"tie_word_embeddings": false,
|
| 121 |
+
"torch_dtype": "float16",
|
| 122 |
+
"transformers_version": null,
|
| 123 |
+
"use_backbone_lora": 0,
|
| 124 |
+
"use_llm_lora": 0,
|
| 125 |
+
"use_thumbnail": true,
|
| 126 |
+
"vision_config": {
|
| 127 |
+
"_attn_implementation_autoset": true,
|
| 128 |
+
"_name_or_path": "",
|
| 129 |
+
"add_cross_attention": false,
|
| 130 |
+
"architectures": [
|
| 131 |
+
"InternVisionModel"
|
| 132 |
+
],
|
| 133 |
+
"attention_dropout": 0.0,
|
| 134 |
+
"bad_words_ids": null,
|
| 135 |
+
"begin_suppress_tokens": null,
|
| 136 |
+
"bos_token_id": null,
|
| 137 |
+
"chunk_size_feed_forward": 0,
|
| 138 |
+
"cross_attention_hidden_size": null,
|
| 139 |
+
"decoder_start_token_id": null,
|
| 140 |
+
"diversity_penalty": 0.0,
|
| 141 |
+
"do_sample": false,
|
| 142 |
+
"drop_path_rate": 0.4,
|
| 143 |
+
"dropout": 0.0,
|
| 144 |
+
"early_stopping": false,
|
| 145 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 146 |
+
"eos_token_id": null,
|
| 147 |
+
"exponential_decay_length_penalty": null,
|
| 148 |
+
"finetuning_task": null,
|
| 149 |
+
"forced_bos_token_id": null,
|
| 150 |
+
"forced_eos_token_id": null,
|
| 151 |
+
"hidden_act": "gelu",
|
| 152 |
+
"hidden_size": 3200,
|
| 153 |
+
"id2label": {
|
| 154 |
+
"0": "LABEL_0",
|
| 155 |
+
"1": "LABEL_1"
|
| 156 |
+
},
|
| 157 |
+
"image_size": 448,
|
| 158 |
+
"initializer_factor": 0.1,
|
| 159 |
+
"initializer_range": 1e-10,
|
| 160 |
+
"intermediate_size": 12800,
|
| 161 |
+
"is_decoder": false,
|
| 162 |
+
"is_encoder_decoder": false,
|
| 163 |
+
"label2id": {
|
| 164 |
+
"LABEL_0": 0,
|
| 165 |
+
"LABEL_1": 1
|
| 166 |
+
},
|
| 167 |
+
"layer_norm_eps": 1e-06,
|
| 168 |
+
"length_penalty": 1.0,
|
| 169 |
+
"max_length": 20,
|
| 170 |
+
"min_length": 0,
|
| 171 |
+
"model_type": "",
|
| 172 |
+
"no_repeat_ngram_size": 0,
|
| 173 |
+
"norm_type": "rms_norm",
|
| 174 |
+
"num_attention_heads": 25,
|
| 175 |
+
"num_beam_groups": 1,
|
| 176 |
+
"num_beams": 1,
|
| 177 |
+
"num_channels": 3,
|
| 178 |
+
"num_hidden_layers": 45,
|
| 179 |
+
"num_return_sequences": 1,
|
| 180 |
+
"output_attentions": false,
|
| 181 |
+
"output_hidden_states": false,
|
| 182 |
+
"output_scores": false,
|
| 183 |
+
"pad_token_id": null,
|
| 184 |
+
"patch_size": 14,
|
| 185 |
+
"prefix": null,
|
| 186 |
+
"problem_type": null,
|
| 187 |
+
"pruned_heads": {},
|
| 188 |
+
"qk_normalization": true,
|
| 189 |
+
"qkv_bias": false,
|
| 190 |
+
"remove_invalid_values": false,
|
| 191 |
+
"repetition_penalty": 1.0,
|
| 192 |
+
"return_dict": true,
|
| 193 |
+
"return_dict_in_generate": false,
|
| 194 |
+
"sep_token_id": null,
|
| 195 |
+
"suppress_tokens": null,
|
| 196 |
+
"task_specific_params": null,
|
| 197 |
+
"temperature": 1.0,
|
| 198 |
+
"tf_legacy_loss": false,
|
| 199 |
+
"tie_encoder_decoder": false,
|
| 200 |
+
"tie_word_embeddings": true,
|
| 201 |
+
"tokenizer_class": null,
|
| 202 |
+
"top_k": 50,
|
| 203 |
+
"top_p": 1.0,
|
| 204 |
+
"torch_dtype": "bfloat16",
|
| 205 |
+
"torchscript": false,
|
| 206 |
+
"transformers_version": "4.50.0",
|
| 207 |
+
"typical_p": 1.0,
|
| 208 |
+
"use_bfloat16": true,
|
| 209 |
+
"use_flash_attn": true
|
| 210 |
+
}
|
| 211 |
+
}
|
configuration_intern_vit.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from typing import Union
|
| 9 |
+
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
|
| 13 |
+
logger = logging.get_logger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class InternVisionConfig(PretrainedConfig):
|
| 17 |
+
r"""
|
| 18 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
| 19 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
| 20 |
+
|
| 21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 22 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 26 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
| 27 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 28 |
+
The size (resolution) of each patch.
|
| 29 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 30 |
+
The size (resolution) of each image.
|
| 31 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
| 32 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
| 33 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
| 34 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 35 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
| 36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 37 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
| 38 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 39 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
| 40 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
| 41 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
| 42 |
+
Number of hidden layers in the Transformer encoder.
|
| 43 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
| 44 |
+
Whether to use flash attention mechanism.
|
| 45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 46 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 47 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
| 48 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
| 49 |
+
The epsilon used by the layer normalization layers.
|
| 50 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 51 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 52 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
| 53 |
+
Dropout rate for stochastic depth.
|
| 54 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 55 |
+
The dropout ratio for the attention probabilities.
|
| 56 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 57 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 58 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
| 59 |
+
A factor for layer scale.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
model_type = 'intern_vit_6b'
|
| 63 |
+
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
num_channels=3,
|
| 67 |
+
patch_size=14,
|
| 68 |
+
image_size=224,
|
| 69 |
+
qkv_bias=False,
|
| 70 |
+
hidden_size=3200,
|
| 71 |
+
num_attention_heads=25,
|
| 72 |
+
intermediate_size=12800,
|
| 73 |
+
qk_normalization=True,
|
| 74 |
+
num_hidden_layers=48,
|
| 75 |
+
use_flash_attn=True,
|
| 76 |
+
hidden_act='gelu',
|
| 77 |
+
norm_type='rms_norm',
|
| 78 |
+
layer_norm_eps=1e-6,
|
| 79 |
+
dropout=0.0,
|
| 80 |
+
drop_path_rate=0.0,
|
| 81 |
+
attention_dropout=0.0,
|
| 82 |
+
initializer_range=0.02,
|
| 83 |
+
initializer_factor=0.1,
|
| 84 |
+
**kwargs,
|
| 85 |
+
):
|
| 86 |
+
super().__init__(**kwargs)
|
| 87 |
+
|
| 88 |
+
self.hidden_size = hidden_size
|
| 89 |
+
self.intermediate_size = intermediate_size
|
| 90 |
+
self.dropout = dropout
|
| 91 |
+
self.drop_path_rate = drop_path_rate
|
| 92 |
+
self.num_hidden_layers = num_hidden_layers
|
| 93 |
+
self.num_attention_heads = num_attention_heads
|
| 94 |
+
self.num_channels = num_channels
|
| 95 |
+
self.patch_size = patch_size
|
| 96 |
+
self.image_size = image_size
|
| 97 |
+
self.initializer_range = initializer_range
|
| 98 |
+
self.initializer_factor = initializer_factor
|
| 99 |
+
self.attention_dropout = attention_dropout
|
| 100 |
+
self.layer_norm_eps = layer_norm_eps
|
| 101 |
+
self.hidden_act = hidden_act
|
| 102 |
+
self.norm_type = norm_type
|
| 103 |
+
self.qkv_bias = qkv_bias
|
| 104 |
+
self.qk_normalization = qk_normalization
|
| 105 |
+
self.use_flash_attn = use_flash_attn
|
| 106 |
+
|
| 107 |
+
@classmethod
|
| 108 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
| 109 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 110 |
+
|
| 111 |
+
if 'vision_config' in config_dict:
|
| 112 |
+
config_dict = config_dict['vision_config']
|
| 113 |
+
|
| 114 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
| 115 |
+
logger.warning(
|
| 116 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 117 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internlm2.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" InternLM2 model configuration"""
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
| 27 |
+
class InternLM2Config(PretrainedConfig):
|
| 28 |
+
r"""
|
| 29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
| 30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
| 31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
| 32 |
+
|
| 33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 34 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 39 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
| 40 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
| 41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 42 |
+
Dimension of the hidden representations.
|
| 43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 44 |
+
Dimension of the MLP representations.
|
| 45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 46 |
+
Number of hidden layers in the Transformer encoder.
|
| 47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 49 |
+
num_key_value_heads (`int`, *optional*):
|
| 50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 56 |
+
`num_attention_heads`.
|
| 57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 58 |
+
The non-linear activation function (function or string) in the decoder.
|
| 59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 65 |
+
The epsilon used by the rms normalization layers.
|
| 66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 68 |
+
relevant if `config.is_decoder=True`.
|
| 69 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
| 70 |
+
Whether to tie weight embeddings
|
| 71 |
+
Example:
|
| 72 |
+
|
| 73 |
+
"""
|
| 74 |
+
model_type = 'internlm2'
|
| 75 |
+
_auto_class = 'AutoConfig'
|
| 76 |
+
|
| 77 |
+
def __init__( # pylint: disable=W0102
|
| 78 |
+
self,
|
| 79 |
+
vocab_size=103168,
|
| 80 |
+
hidden_size=4096,
|
| 81 |
+
intermediate_size=11008,
|
| 82 |
+
num_hidden_layers=32,
|
| 83 |
+
num_attention_heads=32,
|
| 84 |
+
num_key_value_heads=None,
|
| 85 |
+
hidden_act='silu',
|
| 86 |
+
max_position_embeddings=2048,
|
| 87 |
+
initializer_range=0.02,
|
| 88 |
+
rms_norm_eps=1e-6,
|
| 89 |
+
use_cache=True,
|
| 90 |
+
pad_token_id=0,
|
| 91 |
+
bos_token_id=1,
|
| 92 |
+
eos_token_id=2,
|
| 93 |
+
tie_word_embeddings=False,
|
| 94 |
+
bias=True,
|
| 95 |
+
rope_theta=10000,
|
| 96 |
+
rope_scaling=None,
|
| 97 |
+
attn_implementation='eager',
|
| 98 |
+
**kwargs,
|
| 99 |
+
):
|
| 100 |
+
self.vocab_size = vocab_size
|
| 101 |
+
self.max_position_embeddings = max_position_embeddings
|
| 102 |
+
self.hidden_size = hidden_size
|
| 103 |
+
self.intermediate_size = intermediate_size
|
| 104 |
+
self.num_hidden_layers = num_hidden_layers
|
| 105 |
+
self.num_attention_heads = num_attention_heads
|
| 106 |
+
self.bias = bias
|
| 107 |
+
|
| 108 |
+
if num_key_value_heads is None:
|
| 109 |
+
num_key_value_heads = num_attention_heads
|
| 110 |
+
self.num_key_value_heads = num_key_value_heads
|
| 111 |
+
|
| 112 |
+
self.hidden_act = hidden_act
|
| 113 |
+
self.initializer_range = initializer_range
|
| 114 |
+
self.rms_norm_eps = rms_norm_eps
|
| 115 |
+
self.use_cache = use_cache
|
| 116 |
+
self.rope_theta = rope_theta
|
| 117 |
+
self.rope_scaling = rope_scaling
|
| 118 |
+
self._rope_scaling_validation()
|
| 119 |
+
|
| 120 |
+
self.attn_implementation = attn_implementation
|
| 121 |
+
if self.attn_implementation is None:
|
| 122 |
+
self.attn_implementation = 'eager'
|
| 123 |
+
super().__init__(
|
| 124 |
+
pad_token_id=pad_token_id,
|
| 125 |
+
bos_token_id=bos_token_id,
|
| 126 |
+
eos_token_id=eos_token_id,
|
| 127 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 128 |
+
**kwargs,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
def _rope_scaling_validation(self):
|
| 132 |
+
"""
|
| 133 |
+
Validate the `rope_scaling` configuration.
|
| 134 |
+
"""
|
| 135 |
+
if self.rope_scaling is None:
|
| 136 |
+
return
|
| 137 |
+
|
| 138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 139 |
+
raise ValueError(
|
| 140 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
| 141 |
+
f'got {self.rope_scaling}'
|
| 142 |
+
)
|
| 143 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
| 144 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
| 145 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
| 146 |
+
raise ValueError(
|
| 147 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 148 |
+
)
|
| 149 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
| 150 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
configuration_internvl_chat.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import copy
|
| 8 |
+
|
| 9 |
+
from transformers import AutoConfig, LlamaConfig
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
|
| 13 |
+
from .configuration_intern_vit import InternVisionConfig
|
| 14 |
+
from .configuration_internlm2 import InternLM2Config
|
| 15 |
+
from transformers import Qwen2Config, Qwen2ForCausalLM
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class InternVLChatConfig(PretrainedConfig):
|
| 21 |
+
model_type = 'internvl_chat'
|
| 22 |
+
is_composition = True
|
| 23 |
+
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
vision_config=None,
|
| 27 |
+
llm_config=None,
|
| 28 |
+
use_backbone_lora=0,
|
| 29 |
+
use_llm_lora=0,
|
| 30 |
+
select_layer=-1,
|
| 31 |
+
force_image_size=None,
|
| 32 |
+
downsample_ratio=0.5,
|
| 33 |
+
template=None,
|
| 34 |
+
dynamic_image_size=False,
|
| 35 |
+
use_thumbnail=False,
|
| 36 |
+
ps_version='v1',
|
| 37 |
+
min_dynamic_patch=1,
|
| 38 |
+
max_dynamic_patch=6,
|
| 39 |
+
**kwargs):
|
| 40 |
+
super().__init__(**kwargs)
|
| 41 |
+
if vision_config is None:
|
| 42 |
+
vision_config = {'architectures': ['InternVisionModel']}
|
| 43 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
| 44 |
+
|
| 45 |
+
if llm_config is None:
|
| 46 |
+
llm_config = {'architectures': ['Qwen2ForCausalLM']}
|
| 47 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
| 48 |
+
|
| 49 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
| 50 |
+
if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
|
| 51 |
+
self.llm_config = LlamaConfig(**llm_config)
|
| 52 |
+
elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
|
| 53 |
+
self.llm_config = Qwen2Config(**llm_config)
|
| 54 |
+
else:
|
| 55 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
|
| 56 |
+
|
| 57 |
+
# if vision_config is None:
|
| 58 |
+
# vision_config = {}
|
| 59 |
+
# logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
| 60 |
+
|
| 61 |
+
# if llm_config is None:
|
| 62 |
+
# llm_config = {}
|
| 63 |
+
# logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
| 64 |
+
|
| 65 |
+
# self.vision_config = InternVisionConfig(**vision_config)
|
| 66 |
+
# if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
|
| 67 |
+
# self.llm_config = LlamaConfig(**llm_config)
|
| 68 |
+
# elif llm_config.get('architectures')[0] == 'InternLM2ForCausalLM':
|
| 69 |
+
# self.llm_config = InternLM2Config(**llm_config)
|
| 70 |
+
# else:
|
| 71 |
+
# raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
|
| 72 |
+
self.use_backbone_lora = use_backbone_lora
|
| 73 |
+
self.use_llm_lora = use_llm_lora
|
| 74 |
+
self.select_layer = select_layer
|
| 75 |
+
self.force_image_size = force_image_size
|
| 76 |
+
self.downsample_ratio = downsample_ratio
|
| 77 |
+
self.template = template
|
| 78 |
+
self.dynamic_image_size = dynamic_image_size
|
| 79 |
+
self.use_thumbnail = use_thumbnail
|
| 80 |
+
self.ps_version = ps_version # pixel shuffle version
|
| 81 |
+
self.min_dynamic_patch = min_dynamic_patch
|
| 82 |
+
self.max_dynamic_patch = max_dynamic_patch
|
| 83 |
+
|
| 84 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
| 85 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 86 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
| 87 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
| 88 |
+
|
| 89 |
+
def to_dict(self):
|
| 90 |
+
"""
|
| 91 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
| 95 |
+
"""
|
| 96 |
+
output = copy.deepcopy(self.__dict__)
|
| 97 |
+
output['vision_config'] = self.vision_config.to_dict()
|
| 98 |
+
output['llm_config'] = self.llm_config.to_dict()
|
| 99 |
+
output['model_type'] = self.__class__.model_type
|
| 100 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
| 101 |
+
output['use_llm_lora'] = self.use_llm_lora
|
| 102 |
+
output['select_layer'] = self.select_layer
|
| 103 |
+
output['force_image_size'] = self.force_image_size
|
| 104 |
+
output['downsample_ratio'] = self.downsample_ratio
|
| 105 |
+
output['template'] = self.template
|
| 106 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
| 107 |
+
output['use_thumbnail'] = self.use_thumbnail
|
| 108 |
+
output['ps_version'] = self.ps_version
|
| 109 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
| 110 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
| 111 |
+
|
| 112 |
+
return output
|
configuration_skywork_chat.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
|
| 3 |
+
from transformers import AutoConfig, LlamaConfig
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
+
|
| 7 |
+
from .configuration_skywork_vit import SkyworkVisionConfig
|
| 8 |
+
from .configuration_skywork_lm2 import SkyworkLM2Config
|
| 9 |
+
from transformers import Qwen2Config, Qwen2ForCausalLM
|
| 10 |
+
|
| 11 |
+
logger = logging.get_logger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class SkyworkChatConfig(PretrainedConfig):
|
| 15 |
+
model_type = 'skywork_chat'
|
| 16 |
+
is_composition = True
|
| 17 |
+
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
vision_config=None,
|
| 21 |
+
llm_config=None,
|
| 22 |
+
use_backbone_lora=0,
|
| 23 |
+
use_llm_lora=0,
|
| 24 |
+
select_layer=-1,
|
| 25 |
+
force_image_size=None,
|
| 26 |
+
downsample_ratio=0.5,
|
| 27 |
+
template=None,
|
| 28 |
+
dynamic_image_size=False,
|
| 29 |
+
use_thumbnail=False,
|
| 30 |
+
ps_version='v1',
|
| 31 |
+
min_dynamic_patch=1,
|
| 32 |
+
max_dynamic_patch=6,
|
| 33 |
+
**kwargs):
|
| 34 |
+
super().__init__(**kwargs)
|
| 35 |
+
if vision_config is None:
|
| 36 |
+
vision_config = {'architectures': ['SkyworkVisionModel']}
|
| 37 |
+
logger.info('vision_config is None. Initializing the SkyworkVisionConfig with default values.')
|
| 38 |
+
|
| 39 |
+
if llm_config is None:
|
| 40 |
+
llm_config = {'architectures': ['Qwen2ForCausalLM']}
|
| 41 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
| 42 |
+
|
| 43 |
+
self.vision_config = SkyworkVisionConfig(**vision_config)
|
| 44 |
+
if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
|
| 45 |
+
self.llm_config = LlamaConfig(**llm_config)
|
| 46 |
+
elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
|
| 47 |
+
self.llm_config = Qwen2Config(**llm_config)
|
| 48 |
+
else:
|
| 49 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
self.use_backbone_lora = use_backbone_lora
|
| 53 |
+
self.use_llm_lora = use_llm_lora
|
| 54 |
+
self.select_layer = select_layer
|
| 55 |
+
self.force_image_size = force_image_size
|
| 56 |
+
self.downsample_ratio = downsample_ratio
|
| 57 |
+
self.template = template
|
| 58 |
+
self.dynamic_image_size = dynamic_image_size
|
| 59 |
+
self.use_thumbnail = use_thumbnail
|
| 60 |
+
self.ps_version = ps_version # pixel shuffle version
|
| 61 |
+
self.min_dynamic_patch = min_dynamic_patch
|
| 62 |
+
self.max_dynamic_patch = max_dynamic_patch
|
| 63 |
+
|
| 64 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
| 65 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 66 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
| 67 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
| 68 |
+
|
| 69 |
+
def to_dict(self):
|
| 70 |
+
"""
|
| 71 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
| 72 |
+
|
| 73 |
+
Returns:
|
| 74 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
| 75 |
+
"""
|
| 76 |
+
output = copy.deepcopy(self.__dict__)
|
| 77 |
+
output['vision_config'] = self.vision_config.to_dict()
|
| 78 |
+
output['llm_config'] = self.llm_config.to_dict()
|
| 79 |
+
output['model_type'] = self.__class__.model_type
|
| 80 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
| 81 |
+
output['use_llm_lora'] = self.use_llm_lora
|
| 82 |
+
output['select_layer'] = self.select_layer
|
| 83 |
+
output['force_image_size'] = self.force_image_size
|
| 84 |
+
output['downsample_ratio'] = self.downsample_ratio
|
| 85 |
+
output['template'] = self.template
|
| 86 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
| 87 |
+
output['use_thumbnail'] = self.use_thumbnail
|
| 88 |
+
output['ps_version'] = self.ps_version
|
| 89 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
| 90 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
| 91 |
+
|
| 92 |
+
return output
|
configuration_skywork_lm2.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The Skywork team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" SkyworkLM2 model configuration"""
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
| 25 |
+
class SkyworkLM2Config(PretrainedConfig):
|
| 26 |
+
r"""
|
| 27 |
+
Args:
|
| 28 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 29 |
+
Vocabulary size of the SkyworkLM2 model. Defines the number of different tokens that can be represented by the
|
| 30 |
+
`inputs_ids` passed when calling [`SkyworkLM2Model`]
|
| 31 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 32 |
+
Dimension of the hidden representations.
|
| 33 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 34 |
+
Dimension of the MLP representations.
|
| 35 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 36 |
+
Number of hidden layers in the Transformer encoder.
|
| 37 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 38 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 39 |
+
num_key_value_heads (`int`, *optional*):
|
| 40 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 41 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 42 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 43 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 44 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 45 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 46 |
+
`num_attention_heads`.
|
| 47 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 48 |
+
The non-linear activation function (function or string) in the decoder.
|
| 49 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 50 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 51 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 52 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 53 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 54 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 55 |
+
The epsilon used by the rms normalization layers.
|
| 56 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 57 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 58 |
+
relevant if `config.is_decoder=True`.
|
| 59 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
| 60 |
+
Whether to tie weight embeddings
|
| 61 |
+
Example:
|
| 62 |
+
|
| 63 |
+
"""
|
| 64 |
+
_auto_class = 'AutoConfig'
|
| 65 |
+
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
vocab_size=103168,
|
| 69 |
+
hidden_size=4096,
|
| 70 |
+
intermediate_size=11008,
|
| 71 |
+
num_hidden_layers=32,
|
| 72 |
+
num_attention_heads=32,
|
| 73 |
+
num_key_value_heads=None,
|
| 74 |
+
hidden_act='silu',
|
| 75 |
+
max_position_embeddings=2048,
|
| 76 |
+
initializer_range=0.02,
|
| 77 |
+
rms_norm_eps=1e-6,
|
| 78 |
+
use_cache=True,
|
| 79 |
+
pad_token_id=0,
|
| 80 |
+
bos_token_id=1,
|
| 81 |
+
eos_token_id=2,
|
| 82 |
+
tie_word_embeddings=False,
|
| 83 |
+
bias=True,
|
| 84 |
+
rope_theta=10000,
|
| 85 |
+
rope_scaling=None,
|
| 86 |
+
attn_implementation='eager',
|
| 87 |
+
**kwargs,
|
| 88 |
+
):
|
| 89 |
+
self.vocab_size = vocab_size
|
| 90 |
+
self.max_position_embeddings = max_position_embeddings
|
| 91 |
+
self.hidden_size = hidden_size
|
| 92 |
+
self.intermediate_size = intermediate_size
|
| 93 |
+
self.num_hidden_layers = num_hidden_layers
|
| 94 |
+
self.num_attention_heads = num_attention_heads
|
| 95 |
+
self.bias = bias
|
| 96 |
+
|
| 97 |
+
if num_key_value_heads is None:
|
| 98 |
+
num_key_value_heads = num_attention_heads
|
| 99 |
+
self.num_key_value_heads = num_key_value_heads
|
| 100 |
+
|
| 101 |
+
self.hidden_act = hidden_act
|
| 102 |
+
self.initializer_range = initializer_range
|
| 103 |
+
self.rms_norm_eps = rms_norm_eps
|
| 104 |
+
self.use_cache = use_cache
|
| 105 |
+
self.rope_theta = rope_theta
|
| 106 |
+
self.rope_scaling = rope_scaling
|
| 107 |
+
self._rope_scaling_validation()
|
| 108 |
+
|
| 109 |
+
self.attn_implementation = attn_implementation
|
| 110 |
+
if self.attn_implementation is None:
|
| 111 |
+
self.attn_implementation = 'eager'
|
| 112 |
+
super().__init__(
|
| 113 |
+
pad_token_id=pad_token_id,
|
| 114 |
+
bos_token_id=bos_token_id,
|
| 115 |
+
eos_token_id=eos_token_id,
|
| 116 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 117 |
+
**kwargs,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
def _rope_scaling_validation(self):
|
| 121 |
+
"""
|
| 122 |
+
Validate the `rope_scaling` configuration.
|
| 123 |
+
"""
|
| 124 |
+
if self.rope_scaling is None:
|
| 125 |
+
return
|
| 126 |
+
|
| 127 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 128 |
+
raise ValueError(
|
| 129 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
| 130 |
+
f'got {self.rope_scaling}'
|
| 131 |
+
)
|
| 132 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
| 133 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
| 134 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
| 135 |
+
raise ValueError(
|
| 136 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 137 |
+
)
|
| 138 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
| 139 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
configuration_skywork_vit.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Union
|
| 3 |
+
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
+
|
| 7 |
+
logger = logging.get_logger(__name__)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class SkyworkVisionConfig(PretrainedConfig):
|
| 11 |
+
r"""
|
| 12 |
+
Args:
|
| 13 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 14 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
| 15 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 16 |
+
The size (resolution) of each patch.
|
| 17 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 18 |
+
The size (resolution) of each image.
|
| 19 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
| 20 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
| 21 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
| 22 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 23 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
| 24 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 25 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
| 26 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 27 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
| 28 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
| 29 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
| 30 |
+
Number of hidden layers in the Transformer encoder.
|
| 31 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
| 32 |
+
Whether to use flash attention mechanism.
|
| 33 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 34 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 35 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
| 36 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
| 37 |
+
The epsilon used by the layer normalization layers.
|
| 38 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 39 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 40 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
| 41 |
+
Dropout rate for stochastic depth.
|
| 42 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 43 |
+
The dropout ratio for the attention probabilities.
|
| 44 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 45 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 46 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
| 47 |
+
A factor for layer scale.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def __init__(
|
| 52 |
+
self,
|
| 53 |
+
num_channels=3,
|
| 54 |
+
patch_size=14,
|
| 55 |
+
image_size=224,
|
| 56 |
+
qkv_bias=False,
|
| 57 |
+
hidden_size=3200,
|
| 58 |
+
num_attention_heads=25,
|
| 59 |
+
intermediate_size=12800,
|
| 60 |
+
qk_normalization=True,
|
| 61 |
+
num_hidden_layers=48,
|
| 62 |
+
use_flash_attn=True,
|
| 63 |
+
hidden_act='gelu',
|
| 64 |
+
norm_type='rms_norm',
|
| 65 |
+
layer_norm_eps=1e-6,
|
| 66 |
+
dropout=0.0,
|
| 67 |
+
drop_path_rate=0.0,
|
| 68 |
+
attention_dropout=0.0,
|
| 69 |
+
initializer_range=0.02,
|
| 70 |
+
initializer_factor=0.1,
|
| 71 |
+
**kwargs,
|
| 72 |
+
):
|
| 73 |
+
super().__init__(**kwargs)
|
| 74 |
+
|
| 75 |
+
self.hidden_size = hidden_size
|
| 76 |
+
self.intermediate_size = intermediate_size
|
| 77 |
+
self.dropout = dropout
|
| 78 |
+
self.drop_path_rate = drop_path_rate
|
| 79 |
+
self.num_hidden_layers = num_hidden_layers
|
| 80 |
+
self.num_attention_heads = num_attention_heads
|
| 81 |
+
self.num_channels = num_channels
|
| 82 |
+
self.patch_size = patch_size
|
| 83 |
+
self.image_size = image_size
|
| 84 |
+
self.initializer_range = initializer_range
|
| 85 |
+
self.initializer_factor = initializer_factor
|
| 86 |
+
self.attention_dropout = attention_dropout
|
| 87 |
+
self.layer_norm_eps = layer_norm_eps
|
| 88 |
+
self.hidden_act = hidden_act
|
| 89 |
+
self.norm_type = norm_type
|
| 90 |
+
self.qkv_bias = qkv_bias
|
| 91 |
+
self.qk_normalization = qk_normalization
|
| 92 |
+
self.use_flash_attn = use_flash_attn
|
| 93 |
+
|
| 94 |
+
@classmethod
|
| 95 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
| 96 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 97 |
+
|
| 98 |
+
if 'vision_config' in config_dict:
|
| 99 |
+
config_dict = config_dict['vision_config']
|
| 100 |
+
|
| 101 |
+
return cls.from_dict(config_dict, **kwargs)
|
conversation.py
ADDED
|
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Conversation prompt templates.
|
| 3 |
+
|
| 4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
| 5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import dataclasses
|
| 9 |
+
from enum import IntEnum, auto
|
| 10 |
+
from typing import Any, Dict, List, Tuple, Union
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SeparatorStyle(IntEnum):
|
| 14 |
+
"""Separator styles."""
|
| 15 |
+
|
| 16 |
+
ADD_COLON_SINGLE = auto()
|
| 17 |
+
ADD_COLON_TWO = auto()
|
| 18 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
| 19 |
+
NO_COLON_SINGLE = auto()
|
| 20 |
+
NO_COLON_TWO = auto()
|
| 21 |
+
ADD_NEW_LINE_SINGLE = auto()
|
| 22 |
+
LLAMA2 = auto()
|
| 23 |
+
CHATGLM = auto()
|
| 24 |
+
CHATML = auto()
|
| 25 |
+
CHATINTERN = auto()
|
| 26 |
+
DOLLY = auto()
|
| 27 |
+
RWKV = auto()
|
| 28 |
+
PHOENIX = auto()
|
| 29 |
+
ROBIN = auto()
|
| 30 |
+
FALCON_CHAT = auto()
|
| 31 |
+
CHATGLM3 = auto()
|
| 32 |
+
INTERNVL_ZH = auto()
|
| 33 |
+
MPT = auto()
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclasses.dataclass
|
| 37 |
+
class Conversation:
|
| 38 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
| 39 |
+
|
| 40 |
+
# The name of this template
|
| 41 |
+
name: str
|
| 42 |
+
# The template of the system prompt
|
| 43 |
+
system_template: str = '{system_message}'
|
| 44 |
+
# The system message
|
| 45 |
+
system_message: str = ''
|
| 46 |
+
# The names of two roles
|
| 47 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
| 48 |
+
# All messages. Each item is (role, message).
|
| 49 |
+
messages: List[List[str]] = ()
|
| 50 |
+
# The number of few shot examples
|
| 51 |
+
offset: int = 0
|
| 52 |
+
# The separator style and configurations
|
| 53 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
| 54 |
+
sep: str = '\n'
|
| 55 |
+
sep2: str = None
|
| 56 |
+
# Stop criteria (the default one is EOS token)
|
| 57 |
+
stop_str: Union[str, List[str]] = None
|
| 58 |
+
# Stops generation if meeting any token in this list
|
| 59 |
+
stop_token_ids: List[int] = None
|
| 60 |
+
|
| 61 |
+
def get_prompt(self) -> str:
|
| 62 |
+
"""Get the prompt for generation."""
|
| 63 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
| 64 |
+
# ret = system_prompt + self.sep
|
| 65 |
+
# for role, message in self.messages:
|
| 66 |
+
# if type(message) is tuple:
|
| 67 |
+
# message, _, _ = message
|
| 68 |
+
# ret += role + message
|
| 69 |
+
# else:
|
| 70 |
+
# ret += role
|
| 71 |
+
# print(ret)
|
| 72 |
+
|
| 73 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
| 74 |
+
ret = system_prompt + self.sep
|
| 75 |
+
for role, message in self.messages:
|
| 76 |
+
if message:
|
| 77 |
+
ret += role + ': ' + message + self.sep
|
| 78 |
+
else:
|
| 79 |
+
ret += role + ':'
|
| 80 |
+
return ret
|
| 81 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
| 82 |
+
seps = [self.sep, self.sep2]
|
| 83 |
+
ret = system_prompt + seps[0]
|
| 84 |
+
for i, (role, message) in enumerate(self.messages):
|
| 85 |
+
if message:
|
| 86 |
+
ret += role + ': ' + message + seps[i % 2]
|
| 87 |
+
else:
|
| 88 |
+
ret += role + ':'
|
| 89 |
+
return ret
|
| 90 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
| 91 |
+
ret = system_prompt + self.sep
|
| 92 |
+
for role, message in self.messages:
|
| 93 |
+
if message:
|
| 94 |
+
ret += role + ': ' + message + self.sep
|
| 95 |
+
else:
|
| 96 |
+
ret += role + ': ' # must be end with a space
|
| 97 |
+
return ret
|
| 98 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
| 99 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
| 100 |
+
for role, message in self.messages:
|
| 101 |
+
if message:
|
| 102 |
+
ret += role + '\n' + message + self.sep
|
| 103 |
+
else:
|
| 104 |
+
ret += role + '\n'
|
| 105 |
+
return ret
|
| 106 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
| 107 |
+
ret = system_prompt
|
| 108 |
+
for role, message in self.messages:
|
| 109 |
+
if message:
|
| 110 |
+
ret += role + message + self.sep
|
| 111 |
+
else:
|
| 112 |
+
ret += role
|
| 113 |
+
return ret
|
| 114 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
| 115 |
+
seps = [self.sep, self.sep2]
|
| 116 |
+
ret = system_prompt
|
| 117 |
+
for i, (role, message) in enumerate(self.messages):
|
| 118 |
+
if message:
|
| 119 |
+
ret += role + message + seps[i % 2]
|
| 120 |
+
else:
|
| 121 |
+
ret += role
|
| 122 |
+
return ret
|
| 123 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
| 124 |
+
ret = system_prompt
|
| 125 |
+
for i, (role, message) in enumerate(self.messages):
|
| 126 |
+
if message:
|
| 127 |
+
ret += (
|
| 128 |
+
role
|
| 129 |
+
+ ': '
|
| 130 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
| 131 |
+
)
|
| 132 |
+
ret += '\n\n'
|
| 133 |
+
else:
|
| 134 |
+
ret += role + ':'
|
| 135 |
+
return ret
|
| 136 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
| 137 |
+
seps = [self.sep, self.sep2]
|
| 138 |
+
if self.system_message:
|
| 139 |
+
ret = system_prompt
|
| 140 |
+
else:
|
| 141 |
+
ret = '[INST] '
|
| 142 |
+
for i, (role, message) in enumerate(self.messages):
|
| 143 |
+
tag = self.roles[i % 2]
|
| 144 |
+
if message:
|
| 145 |
+
if i == 0:
|
| 146 |
+
ret += message + ' '
|
| 147 |
+
else:
|
| 148 |
+
ret += tag + ' ' + message + seps[i % 2]
|
| 149 |
+
else:
|
| 150 |
+
ret += tag
|
| 151 |
+
return ret
|
| 152 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
| 153 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
| 154 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
| 155 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
| 156 |
+
if system_prompt:
|
| 157 |
+
ret = system_prompt + self.sep
|
| 158 |
+
else:
|
| 159 |
+
ret = ''
|
| 160 |
+
|
| 161 |
+
for i, (role, message) in enumerate(self.messages):
|
| 162 |
+
if i % 2 == 0:
|
| 163 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
| 164 |
+
|
| 165 |
+
if message:
|
| 166 |
+
ret += f'{role}:{message}{self.sep}'
|
| 167 |
+
else:
|
| 168 |
+
ret += f'{role}:'
|
| 169 |
+
return ret
|
| 170 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
| 171 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
| 172 |
+
for role, message in self.messages:
|
| 173 |
+
if message:
|
| 174 |
+
ret += role + '\n' + message + self.sep + '\n'
|
| 175 |
+
else:
|
| 176 |
+
ret += role + '\n'
|
| 177 |
+
return ret
|
| 178 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
| 179 |
+
ret = ''
|
| 180 |
+
if self.system_message:
|
| 181 |
+
ret += system_prompt
|
| 182 |
+
for role, message in self.messages:
|
| 183 |
+
if message:
|
| 184 |
+
ret += role + '\n' + ' ' + message
|
| 185 |
+
else:
|
| 186 |
+
ret += role
|
| 187 |
+
return ret
|
| 188 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
| 189 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
| 190 |
+
seps = [self.sep, self.sep2]
|
| 191 |
+
ret = system_prompt
|
| 192 |
+
for i, (role, message) in enumerate(self.messages):
|
| 193 |
+
# if i % 2 == 0:
|
| 194 |
+
# ret += "<s>"
|
| 195 |
+
if message:
|
| 196 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
| 197 |
+
else:
|
| 198 |
+
ret += role + ':'
|
| 199 |
+
return ret
|
| 200 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
| 201 |
+
seps = [self.sep, self.sep2]
|
| 202 |
+
ret = system_prompt
|
| 203 |
+
for i, (role, message) in enumerate(self.messages):
|
| 204 |
+
if message:
|
| 205 |
+
ret += role + ':\n' + message + seps[i % 2]
|
| 206 |
+
if i % 2 == 1:
|
| 207 |
+
ret += '\n\n'
|
| 208 |
+
else:
|
| 209 |
+
ret += role + ':\n'
|
| 210 |
+
return ret
|
| 211 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
| 212 |
+
ret = system_prompt
|
| 213 |
+
for role, message in self.messages:
|
| 214 |
+
if message:
|
| 215 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
| 216 |
+
else:
|
| 217 |
+
ret += role + ': ' + '<s>'
|
| 218 |
+
return ret
|
| 219 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
| 220 |
+
ret = system_prompt + self.sep
|
| 221 |
+
for role, message in self.messages:
|
| 222 |
+
if message:
|
| 223 |
+
ret += role + ':\n' + message + self.sep
|
| 224 |
+
else:
|
| 225 |
+
ret += role + ':\n'
|
| 226 |
+
return ret
|
| 227 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
| 228 |
+
ret = ''
|
| 229 |
+
if self.system_message:
|
| 230 |
+
ret += system_prompt + self.sep
|
| 231 |
+
for role, message in self.messages:
|
| 232 |
+
if message:
|
| 233 |
+
ret += role + ': ' + message + self.sep
|
| 234 |
+
else:
|
| 235 |
+
ret += role + ':'
|
| 236 |
+
|
| 237 |
+
return ret
|
| 238 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
| 239 |
+
seps = [self.sep2, self.sep]
|
| 240 |
+
ret = self.system_message + seps[0]
|
| 241 |
+
for i, (role, message) in enumerate(self.messages):
|
| 242 |
+
if message:
|
| 243 |
+
ret += role + ': ' + message + seps[i % 2]
|
| 244 |
+
else:
|
| 245 |
+
ret += role + ':'
|
| 246 |
+
return ret
|
| 247 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
| 248 |
+
ret = system_prompt
|
| 249 |
+
for role, message in self.messages:
|
| 250 |
+
if message:
|
| 251 |
+
if type(message) is tuple:
|
| 252 |
+
message, _, _ = message
|
| 253 |
+
# ret += role + message + self.sep
|
| 254 |
+
ret += role + message
|
| 255 |
+
else:
|
| 256 |
+
ret += role
|
| 257 |
+
|
| 258 |
+
return ret
|
| 259 |
+
else:
|
| 260 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
| 261 |
+
|
| 262 |
+
def set_system_message(self, system_message: str):
|
| 263 |
+
"""Set the system message."""
|
| 264 |
+
self.system_message = system_message
|
| 265 |
+
|
| 266 |
+
def append_message(self, role: str, message: str):
|
| 267 |
+
"""Append a new message."""
|
| 268 |
+
self.messages.append([role, message])
|
| 269 |
+
|
| 270 |
+
def update_last_message(self, message: str):
|
| 271 |
+
"""Update the last output.
|
| 272 |
+
|
| 273 |
+
The last message is typically set to be None when constructing the prompt,
|
| 274 |
+
so we need to update it in-place after getting the response from a model.
|
| 275 |
+
"""
|
| 276 |
+
self.messages[-1][1] = message
|
| 277 |
+
|
| 278 |
+
def to_gradio_chatbot(self):
|
| 279 |
+
"""Convert the conversation to gradio chatbot format."""
|
| 280 |
+
ret = []
|
| 281 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
| 282 |
+
if i % 2 == 0:
|
| 283 |
+
ret.append([msg, None])
|
| 284 |
+
else:
|
| 285 |
+
ret[-1][-1] = msg
|
| 286 |
+
return ret
|
| 287 |
+
|
| 288 |
+
def to_openai_api_messages(self):
|
| 289 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
| 290 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
| 291 |
+
|
| 292 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
| 293 |
+
if i % 2 == 0:
|
| 294 |
+
ret.append({'role': 'user', 'content': msg})
|
| 295 |
+
else:
|
| 296 |
+
if msg is not None:
|
| 297 |
+
ret.append({'role': 'assistant', 'content': msg})
|
| 298 |
+
return ret
|
| 299 |
+
|
| 300 |
+
def copy(self):
|
| 301 |
+
return Conversation(
|
| 302 |
+
name=self.name,
|
| 303 |
+
system_template=self.system_template,
|
| 304 |
+
system_message=self.system_message,
|
| 305 |
+
roles=self.roles,
|
| 306 |
+
messages=[[x, y] for x, y in self.messages],
|
| 307 |
+
offset=self.offset,
|
| 308 |
+
sep_style=self.sep_style,
|
| 309 |
+
sep=self.sep,
|
| 310 |
+
sep2=self.sep2,
|
| 311 |
+
stop_str=self.stop_str,
|
| 312 |
+
stop_token_ids=self.stop_token_ids,
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
def dict(self):
|
| 316 |
+
return {
|
| 317 |
+
'template_name': self.name,
|
| 318 |
+
'system_message': self.system_message,
|
| 319 |
+
'roles': self.roles,
|
| 320 |
+
'messages': self.messages,
|
| 321 |
+
'offset': self.offset,
|
| 322 |
+
}
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
# A global registry for all conversation templates
|
| 326 |
+
conv_templates: Dict[str, Conversation] = {}
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
| 330 |
+
"""Register a new conversation template."""
|
| 331 |
+
if not override:
|
| 332 |
+
assert (
|
| 333 |
+
template.name not in conv_templates
|
| 334 |
+
), f'{template.name} has been registered.'
|
| 335 |
+
|
| 336 |
+
conv_templates[template.name] = template
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def get_conv_template(name: str) -> Conversation:
|
| 340 |
+
"""Get a conversation template."""
|
| 341 |
+
return conv_templates[name].copy()
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
# InternVL-Chat-V1-1 template
|
| 345 |
+
# register_conv_template(
|
| 346 |
+
# Conversation(
|
| 347 |
+
# name='internvl_zh',
|
| 348 |
+
# system_template='',
|
| 349 |
+
# roles=('<human>', '<bot>'),
|
| 350 |
+
# sep_style=SeparatorStyle.INTERNVL_ZH,
|
| 351 |
+
# sep='</s>',
|
| 352 |
+
# sep2=' ',
|
| 353 |
+
# )
|
| 354 |
+
# )
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
| 358 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
| 359 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
| 360 |
+
# Therefore, they are completely equivalent during inference.
|
| 361 |
+
# register_conv_template(
|
| 362 |
+
# Conversation(
|
| 363 |
+
# name='Hermes-2',
|
| 364 |
+
# system_template='<|begin▁of▁sentence|>system\n{system_message}',
|
| 365 |
+
# # note: The new system prompt was not used here to avoid changes in benchmark performance.
|
| 366 |
+
# # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
| 367 |
+
# system_message='你是SkyVL,是由昆仑万维开发的多模态大语言模型。',
|
| 368 |
+
# roles=('<|begin▁of▁sentence|><|User|>\n', '<|Assistant|>\n'),
|
| 369 |
+
# sep_style=SeparatorStyle.MPT,
|
| 370 |
+
# sep='<|end▁of▁sentence|>',
|
| 371 |
+
# stop_str='<|endoftext|>',
|
| 372 |
+
# )
|
| 373 |
+
# )
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
register_conv_template(
|
| 377 |
+
Conversation(
|
| 378 |
+
name='internlm2-chat',
|
| 379 |
+
system_template='<|begin▁of▁sentence|>{system_message}',
|
| 380 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
| 381 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
| 382 |
+
# system_message='你是SkyVL,是由昆仑万维开发的多模态大语言模型。',
|
| 383 |
+
system_message='',
|
| 384 |
+
# roles=('<|begin▁of▁sentence|>user\n', '<|begin▁of▁sentence|>assistant\n'),
|
| 385 |
+
roles=('<|User|>\n', '<|Assistant|><think>\n'),
|
| 386 |
+
sep_style=SeparatorStyle.MPT,
|
| 387 |
+
sep='<|end▁of▁sentence|>',
|
| 388 |
+
)
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
# register_conv_template(
|
| 393 |
+
# Conversation(
|
| 394 |
+
# name='phi3-chat',
|
| 395 |
+
# system_template='<|system|>\n{system_message}',
|
| 396 |
+
# # note: The new system prompt was not used here to avoid changes in benchmark performance.
|
| 397 |
+
# # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
| 398 |
+
# system_message='你是SkyVL,是由昆仑万维开发的多模态大语言模型。',
|
| 399 |
+
# roles=('<|user|>\n', '<|assistant|>\n'),
|
| 400 |
+
# sep_style=SeparatorStyle.MPT,
|
| 401 |
+
# sep='<|end|>',
|
| 402 |
+
# )
|
| 403 |
+
# )
|
| 404 |
+
#
|
| 405 |
+
#
|
| 406 |
+
# register_conv_template(
|
| 407 |
+
# Conversation(
|
| 408 |
+
# name='internvl2_5',
|
| 409 |
+
# system_template='<|begin▁of▁sentence|>{system_message}',
|
| 410 |
+
# # system_message='你是SkyVL,是由昆仑万维开发的多模态大语言模型。',
|
| 411 |
+
# system_message = '',
|
| 412 |
+
# roles=('<|User|>\n', '<|Assistant|>\n'),
|
| 413 |
+
# sep_style=SeparatorStyle.MPT,
|
| 414 |
+
# sep='<|end▁of▁sentence|>\n',
|
| 415 |
+
# )
|
| 416 |
+
# )
|
generation_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"eos_token_id": [
|
| 4 |
+
151644,
|
| 5 |
+
151645
|
| 6 |
+
],
|
| 7 |
+
"transformers_version": "4.43.0"
|
| 8 |
+
}
|
inputs_stats.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7facb22600e795d114a90d0ee02515d18df182747ba63ffd54fea415d000a137
|
| 3 |
+
size 37987294
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_intern_vit.py
ADDED
|
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
from typing import Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
from timm.models.layers import DropPath
|
| 14 |
+
from torch import nn
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
| 17 |
+
BaseModelOutputWithPooling)
|
| 18 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
from .configuration_intern_vit import InternVisionConfig
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
| 25 |
+
from flash_attn.flash_attn_interface import \
|
| 26 |
+
flash_attn_varlen_qkvpacked_func
|
| 27 |
+
has_flash_attn = True
|
| 28 |
+
except:
|
| 29 |
+
print('FlashAttention2 is not installed.')
|
| 30 |
+
has_flash_attn = False
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class FlashAttention(nn.Module):
|
| 36 |
+
"""Implement the scaled dot product attention with softmax.
|
| 37 |
+
Arguments
|
| 38 |
+
---------
|
| 39 |
+
softmax_scale: The temperature to use for the softmax attention.
|
| 40 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
| 41 |
+
runtime)
|
| 42 |
+
attention_dropout: The dropout rate to apply to the attention
|
| 43 |
+
(default: 0.0)
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.softmax_scale = softmax_scale
|
| 49 |
+
self.dropout_p = attention_dropout
|
| 50 |
+
|
| 51 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
| 52 |
+
max_s=None, need_weights=False):
|
| 53 |
+
"""Implements the multihead softmax attention.
|
| 54 |
+
Arguments
|
| 55 |
+
---------
|
| 56 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
| 57 |
+
if unpadded: (nnz, 3, h, d)
|
| 58 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
| 59 |
+
"""
|
| 60 |
+
assert not need_weights
|
| 61 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
| 62 |
+
assert qkv.is_cuda
|
| 63 |
+
|
| 64 |
+
if cu_seqlens is None:
|
| 65 |
+
batch_size = qkv.shape[0]
|
| 66 |
+
seqlen = qkv.shape[1]
|
| 67 |
+
if key_padding_mask is None:
|
| 68 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
| 69 |
+
max_s = seqlen
|
| 70 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
| 71 |
+
device=qkv.device)
|
| 72 |
+
output = flash_attn_varlen_qkvpacked_func(
|
| 73 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 74 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 75 |
+
)
|
| 76 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
| 77 |
+
else:
|
| 78 |
+
nheads = qkv.shape[-2]
|
| 79 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
| 80 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
| 81 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
| 82 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
| 83 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 84 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 85 |
+
)
|
| 86 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
| 87 |
+
indices, batch_size, seqlen),
|
| 88 |
+
'b s (h d) -> b s h d', h=nheads)
|
| 89 |
+
else:
|
| 90 |
+
assert max_s is not None
|
| 91 |
+
output = flash_attn_varlen_qkvpacked_func(
|
| 92 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 93 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
return output, None
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class InternRMSNorm(nn.Module):
|
| 100 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 103 |
+
self.variance_epsilon = eps
|
| 104 |
+
|
| 105 |
+
def forward(self, hidden_states):
|
| 106 |
+
input_dtype = hidden_states.dtype
|
| 107 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 108 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 109 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 110 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
from apex.normalization import FusedRMSNorm
|
| 115 |
+
|
| 116 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
| 117 |
+
|
| 118 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
| 119 |
+
except ImportError:
|
| 120 |
+
# using the normal InternRMSNorm
|
| 121 |
+
pass
|
| 122 |
+
except Exception:
|
| 123 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
| 124 |
+
pass
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
NORM2FN = {
|
| 128 |
+
'rms_norm': InternRMSNorm,
|
| 129 |
+
'layer_norm': nn.LayerNorm,
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class InternVisionEmbeddings(nn.Module):
|
| 134 |
+
def __init__(self, config: InternVisionConfig):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.config = config
|
| 137 |
+
self.embed_dim = config.hidden_size
|
| 138 |
+
self.image_size = config.image_size
|
| 139 |
+
self.patch_size = config.patch_size
|
| 140 |
+
|
| 141 |
+
self.class_embedding = nn.Parameter(
|
| 142 |
+
torch.randn(1, 1, self.embed_dim),
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
self.patch_embedding = nn.Conv2d(
|
| 146 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 150 |
+
self.num_positions = self.num_patches + 1
|
| 151 |
+
|
| 152 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
| 153 |
+
|
| 154 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
| 155 |
+
target_dtype = pos_embed.dtype
|
| 156 |
+
pos_embed = pos_embed.float().reshape(
|
| 157 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
| 158 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
| 159 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
| 160 |
+
return pos_embed
|
| 161 |
+
|
| 162 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 163 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 164 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
| 165 |
+
batch_size, _, height, width = patch_embeds.shape
|
| 166 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 167 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
| 168 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 169 |
+
position_embedding = torch.cat([
|
| 170 |
+
self.position_embedding[:, :1, :],
|
| 171 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
| 172 |
+
], dim=1)
|
| 173 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
| 174 |
+
return embeddings
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class InternAttention(nn.Module):
|
| 178 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 179 |
+
|
| 180 |
+
def __init__(self, config: InternVisionConfig):
|
| 181 |
+
super().__init__()
|
| 182 |
+
self.config = config
|
| 183 |
+
self.embed_dim = config.hidden_size
|
| 184 |
+
self.num_heads = config.num_attention_heads
|
| 185 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
| 186 |
+
if config.use_flash_attn and not has_flash_attn:
|
| 187 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
| 188 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 189 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 190 |
+
raise ValueError(
|
| 191 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
| 192 |
+
f' {self.num_heads}).'
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
self.scale = self.head_dim ** -0.5
|
| 196 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
| 197 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
| 198 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 199 |
+
|
| 200 |
+
self.qk_normalization = config.qk_normalization
|
| 201 |
+
|
| 202 |
+
if self.qk_normalization:
|
| 203 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 204 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 205 |
+
|
| 206 |
+
if self.use_flash_attn:
|
| 207 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
| 208 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 209 |
+
|
| 210 |
+
def _naive_attn(self, x):
|
| 211 |
+
B, N, C = x.shape
|
| 212 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 213 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 214 |
+
|
| 215 |
+
if self.qk_normalization:
|
| 216 |
+
B_, H_, N_, D_ = q.shape
|
| 217 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 218 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 219 |
+
|
| 220 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
| 221 |
+
attn = attn.softmax(dim=-1)
|
| 222 |
+
attn = self.attn_drop(attn)
|
| 223 |
+
|
| 224 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 225 |
+
x = self.proj(x)
|
| 226 |
+
x = self.proj_drop(x)
|
| 227 |
+
return x
|
| 228 |
+
|
| 229 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
| 230 |
+
qkv = self.qkv(x)
|
| 231 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
| 232 |
+
|
| 233 |
+
if self.qk_normalization:
|
| 234 |
+
q, k, v = qkv.unbind(2)
|
| 235 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
| 236 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
| 237 |
+
qkv = torch.stack([q, k, v], dim=2)
|
| 238 |
+
|
| 239 |
+
context, _ = self.inner_attn(
|
| 240 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
| 241 |
+
)
|
| 242 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
| 243 |
+
outs = self.proj_drop(outs)
|
| 244 |
+
return outs
|
| 245 |
+
|
| 246 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 247 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
| 248 |
+
return x
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
class InternMLP(nn.Module):
|
| 252 |
+
def __init__(self, config: InternVisionConfig):
|
| 253 |
+
super().__init__()
|
| 254 |
+
self.config = config
|
| 255 |
+
self.act = ACT2FN[config.hidden_act]
|
| 256 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 257 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 258 |
+
|
| 259 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 260 |
+
hidden_states = self.fc1(hidden_states)
|
| 261 |
+
hidden_states = self.act(hidden_states)
|
| 262 |
+
hidden_states = self.fc2(hidden_states)
|
| 263 |
+
return hidden_states
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class InternVisionEncoderLayer(nn.Module):
|
| 267 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
| 268 |
+
super().__init__()
|
| 269 |
+
self.embed_dim = config.hidden_size
|
| 270 |
+
self.intermediate_size = config.intermediate_size
|
| 271 |
+
self.norm_type = config.norm_type
|
| 272 |
+
|
| 273 |
+
self.attn = InternAttention(config)
|
| 274 |
+
self.mlp = InternMLP(config)
|
| 275 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 276 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 277 |
+
|
| 278 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 279 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 280 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 281 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 282 |
+
|
| 283 |
+
def forward(
|
| 284 |
+
self,
|
| 285 |
+
hidden_states: torch.Tensor,
|
| 286 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
| 287 |
+
"""
|
| 288 |
+
Args:
|
| 289 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 290 |
+
"""
|
| 291 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
|
| 292 |
+
|
| 293 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
|
| 294 |
+
|
| 295 |
+
return hidden_states
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
class InternVisionEncoder(nn.Module):
|
| 299 |
+
"""
|
| 300 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 301 |
+
[`InternEncoderLayer`].
|
| 302 |
+
|
| 303 |
+
Args:
|
| 304 |
+
config (`InternConfig`):
|
| 305 |
+
The corresponding vision configuration for the `InternEncoder`.
|
| 306 |
+
"""
|
| 307 |
+
|
| 308 |
+
def __init__(self, config: InternVisionConfig):
|
| 309 |
+
super().__init__()
|
| 310 |
+
self.config = config
|
| 311 |
+
# stochastic depth decay rule
|
| 312 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
| 313 |
+
self.layers = nn.ModuleList([
|
| 314 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
| 315 |
+
self.gradient_checkpointing = True
|
| 316 |
+
|
| 317 |
+
def forward(
|
| 318 |
+
self,
|
| 319 |
+
inputs_embeds,
|
| 320 |
+
output_hidden_states: Optional[bool] = None,
|
| 321 |
+
return_dict: Optional[bool] = None,
|
| 322 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 323 |
+
r"""
|
| 324 |
+
Args:
|
| 325 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 326 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 327 |
+
output_hidden_states (`bool`, *optional*):
|
| 328 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 329 |
+
for more detail.
|
| 330 |
+
return_dict (`bool`, *optional*):
|
| 331 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 332 |
+
"""
|
| 333 |
+
output_hidden_states = (
|
| 334 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 335 |
+
)
|
| 336 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 337 |
+
|
| 338 |
+
encoder_states = () if output_hidden_states else None
|
| 339 |
+
hidden_states = inputs_embeds
|
| 340 |
+
|
| 341 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 342 |
+
if output_hidden_states:
|
| 343 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 344 |
+
if self.gradient_checkpointing and self.training:
|
| 345 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 346 |
+
encoder_layer,
|
| 347 |
+
hidden_states)
|
| 348 |
+
else:
|
| 349 |
+
layer_outputs = encoder_layer(
|
| 350 |
+
hidden_states,
|
| 351 |
+
)
|
| 352 |
+
hidden_states = layer_outputs
|
| 353 |
+
|
| 354 |
+
if output_hidden_states:
|
| 355 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 356 |
+
|
| 357 |
+
if not return_dict:
|
| 358 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
| 359 |
+
return BaseModelOutput(
|
| 360 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class InternVisionModel(PreTrainedModel):
|
| 365 |
+
main_input_name = 'pixel_values'
|
| 366 |
+
_supports_flash_attn_2 = True
|
| 367 |
+
config_class = InternVisionConfig
|
| 368 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
| 369 |
+
|
| 370 |
+
def __init__(self, config: InternVisionConfig):
|
| 371 |
+
super().__init__(config)
|
| 372 |
+
self.config = config
|
| 373 |
+
|
| 374 |
+
self.embeddings = InternVisionEmbeddings(config)
|
| 375 |
+
self.encoder = InternVisionEncoder(config)
|
| 376 |
+
|
| 377 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
| 378 |
+
pos_emb = self.embeddings.position_embedding
|
| 379 |
+
_, num_positions, embed_dim = pos_emb.shape
|
| 380 |
+
cls_emb = pos_emb[:, :1, :]
|
| 381 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
| 382 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
| 383 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
| 384 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
| 385 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
| 386 |
+
self.embeddings.image_size = new_size
|
| 387 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
| 388 |
+
|
| 389 |
+
def get_input_embeddings(self):
|
| 390 |
+
return self.embeddings
|
| 391 |
+
|
| 392 |
+
def forward(
|
| 393 |
+
self,
|
| 394 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 395 |
+
output_hidden_states: Optional[bool] = None,
|
| 396 |
+
return_dict: Optional[bool] = None,
|
| 397 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
| 398 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 399 |
+
output_hidden_states = (
|
| 400 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 401 |
+
)
|
| 402 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 403 |
+
|
| 404 |
+
if pixel_values is None and pixel_embeds is None:
|
| 405 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
| 406 |
+
|
| 407 |
+
if pixel_embeds is not None:
|
| 408 |
+
hidden_states = pixel_embeds
|
| 409 |
+
else:
|
| 410 |
+
if len(pixel_values.shape) == 4:
|
| 411 |
+
hidden_states = self.embeddings(pixel_values)
|
| 412 |
+
else:
|
| 413 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
| 414 |
+
encoder_outputs = self.encoder(
|
| 415 |
+
inputs_embeds=hidden_states,
|
| 416 |
+
output_hidden_states=output_hidden_states,
|
| 417 |
+
return_dict=return_dict,
|
| 418 |
+
)
|
| 419 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
| 420 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 421 |
+
|
| 422 |
+
if not return_dict:
|
| 423 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 424 |
+
|
| 425 |
+
return BaseModelOutputWithPooling(
|
| 426 |
+
last_hidden_state=last_hidden_state,
|
| 427 |
+
pooler_output=pooled_output,
|
| 428 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 429 |
+
attentions=encoder_outputs.attentions,
|
| 430 |
+
)
|
modeling_internlm2.py
ADDED
|
@@ -0,0 +1,1415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" PyTorch InternLM2 model."""
|
| 17 |
+
import math
|
| 18 |
+
import queue
|
| 19 |
+
import threading
|
| 20 |
+
import warnings
|
| 21 |
+
from typing import List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
import torch.utils.checkpoint
|
| 26 |
+
from einops import rearrange
|
| 27 |
+
from torch import nn
|
| 28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
+
from transformers.activations import ACT2FN
|
| 30 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
| 31 |
+
CausalLMOutputWithPast,
|
| 32 |
+
SequenceClassifierOutputWithPast)
|
| 33 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 34 |
+
from transformers.utils import (add_start_docstrings,
|
| 35 |
+
add_start_docstrings_to_model_forward, logging,
|
| 36 |
+
replace_return_docstrings)
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
from transformers.generation.streamers import BaseStreamer
|
| 40 |
+
except: # noqa # pylint: disable=bare-except
|
| 41 |
+
BaseStreamer = None
|
| 42 |
+
|
| 43 |
+
from .configuration_internlm2 import InternLM2Config
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__)
|
| 46 |
+
|
| 47 |
+
_CONFIG_FOR_DOC = 'InternLM2Config'
|
| 48 |
+
|
| 49 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
| 50 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
| 51 |
+
try:
|
| 52 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
| 53 |
+
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
|
| 54 |
+
from flash_attn.bert_padding import index_first_axis as _index_first_axis
|
| 55 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
| 56 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
| 57 |
+
|
| 58 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 59 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 60 |
+
has_flash_attn = True
|
| 61 |
+
except:
|
| 62 |
+
has_flash_attn = False
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def _import_flash_attn():
|
| 66 |
+
global flash_attn_func, flash_attn_varlen_func
|
| 67 |
+
global pad_input, index_first_axis, unpad_input
|
| 68 |
+
try:
|
| 69 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
| 70 |
+
from flash_attn import \
|
| 71 |
+
flash_attn_varlen_func as _flash_attn_varlen_func
|
| 72 |
+
from flash_attn.bert_padding import \
|
| 73 |
+
index_first_axis as _index_first_axis
|
| 74 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
| 75 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
| 76 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 77 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 78 |
+
except ImportError:
|
| 79 |
+
raise ImportError('flash_attn is not installed.')
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 83 |
+
def _get_unpad_data(attention_mask):
|
| 84 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 85 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 86 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 87 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 88 |
+
return (
|
| 89 |
+
indices,
|
| 90 |
+
cu_seqlens,
|
| 91 |
+
max_seqlen_in_batch,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 96 |
+
def _make_causal_mask(
|
| 97 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 98 |
+
):
|
| 99 |
+
"""
|
| 100 |
+
Make causal mask used for bi-directional self-attention.
|
| 101 |
+
"""
|
| 102 |
+
bsz, tgt_len = input_ids_shape
|
| 103 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
| 104 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 105 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 106 |
+
mask = mask.to(dtype)
|
| 107 |
+
|
| 108 |
+
if past_key_values_length > 0:
|
| 109 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 110 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 114 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 115 |
+
"""
|
| 116 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 117 |
+
"""
|
| 118 |
+
bsz, src_len = mask.size()
|
| 119 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 120 |
+
|
| 121 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 122 |
+
|
| 123 |
+
inverted_mask = 1.0 - expanded_mask
|
| 124 |
+
|
| 125 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
| 129 |
+
class InternLM2RMSNorm(nn.Module):
|
| 130 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 131 |
+
"""
|
| 132 |
+
InternLM2RMSNorm is equivalent to T5LayerNorm
|
| 133 |
+
"""
|
| 134 |
+
super().__init__()
|
| 135 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 136 |
+
self.variance_epsilon = eps
|
| 137 |
+
|
| 138 |
+
def forward(self, hidden_states):
|
| 139 |
+
input_dtype = hidden_states.dtype
|
| 140 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 141 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 142 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 143 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
| 147 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
| 148 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 149 |
+
super().__init__()
|
| 150 |
+
|
| 151 |
+
self.dim = dim
|
| 152 |
+
self.max_position_embeddings = max_position_embeddings
|
| 153 |
+
self.base = base
|
| 154 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 155 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 156 |
+
|
| 157 |
+
# Build here to make `torch.jit.trace` work.
|
| 158 |
+
self._set_cos_sin_cache(
|
| 159 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 163 |
+
self.max_seq_len_cached = seq_len
|
| 164 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 165 |
+
|
| 166 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 167 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 168 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 169 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 170 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 171 |
+
|
| 172 |
+
def forward(self, x, seq_len=None):
|
| 173 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 174 |
+
if seq_len > self.max_seq_len_cached:
|
| 175 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
| 176 |
+
|
| 177 |
+
return (
|
| 178 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
| 179 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
| 184 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 185 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 186 |
+
|
| 187 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 188 |
+
self.scaling_factor = scaling_factor
|
| 189 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 190 |
+
|
| 191 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 192 |
+
self.max_seq_len_cached = seq_len
|
| 193 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 194 |
+
t = t / self.scaling_factor
|
| 195 |
+
|
| 196 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 197 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 198 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 199 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 200 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
| 204 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 205 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
| 206 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 210 |
+
self.scaling_factor = scaling_factor
|
| 211 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 212 |
+
|
| 213 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 214 |
+
self.max_seq_len_cached = seq_len
|
| 215 |
+
|
| 216 |
+
if seq_len > self.max_position_embeddings:
|
| 217 |
+
base = self.base * (
|
| 218 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 219 |
+
) ** (self.dim / (self.dim - 2))
|
| 220 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 221 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 222 |
+
|
| 223 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 224 |
+
|
| 225 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 226 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 227 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 228 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 229 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
| 233 |
+
def rotate_half(x):
|
| 234 |
+
"""Rotates half the hidden dims of the input."""
|
| 235 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 236 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 237 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
| 241 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
| 242 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
| 243 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
| 244 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
| 245 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 246 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 247 |
+
return q_embed, k_embed
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class InternLM2MLP(nn.Module):
|
| 251 |
+
def __init__(self, config):
|
| 252 |
+
super().__init__()
|
| 253 |
+
self.config = config
|
| 254 |
+
self.hidden_size = config.hidden_size
|
| 255 |
+
self.intermediate_size = config.intermediate_size
|
| 256 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 257 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 258 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 259 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 260 |
+
|
| 261 |
+
def forward(self, x):
|
| 262 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
| 263 |
+
|
| 264 |
+
return down_proj
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
| 268 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 269 |
+
"""
|
| 270 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 271 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 272 |
+
"""
|
| 273 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 274 |
+
if n_rep == 1:
|
| 275 |
+
return hidden_states
|
| 276 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 277 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
| 281 |
+
class InternLM2Attention(nn.Module):
|
| 282 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 283 |
+
|
| 284 |
+
def __init__(self, config: InternLM2Config):
|
| 285 |
+
super().__init__()
|
| 286 |
+
self.config = config
|
| 287 |
+
self.hidden_size = config.hidden_size
|
| 288 |
+
self.num_heads = config.num_attention_heads
|
| 289 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 290 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 291 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 292 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 293 |
+
self.is_causal = True
|
| 294 |
+
|
| 295 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 296 |
+
raise ValueError(
|
| 297 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
| 298 |
+
f' and `num_heads`: {self.num_heads}).'
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
self.wqkv = nn.Linear(
|
| 302 |
+
self.hidden_size,
|
| 303 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
| 304 |
+
bias=config.bias,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
| 308 |
+
self._init_rope()
|
| 309 |
+
|
| 310 |
+
def _init_rope(self):
|
| 311 |
+
if self.config.rope_scaling is None:
|
| 312 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
| 313 |
+
self.head_dim,
|
| 314 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 315 |
+
base=self.config.rope_theta,
|
| 316 |
+
)
|
| 317 |
+
else:
|
| 318 |
+
scaling_type = self.config.rope_scaling['type']
|
| 319 |
+
scaling_factor = self.config.rope_scaling['factor']
|
| 320 |
+
if scaling_type == 'dynamic':
|
| 321 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
| 322 |
+
self.head_dim,
|
| 323 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 324 |
+
base=self.config.rope_theta,
|
| 325 |
+
scaling_factor=scaling_factor,
|
| 326 |
+
)
|
| 327 |
+
elif scaling_type == 'linear':
|
| 328 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
| 329 |
+
self.head_dim,
|
| 330 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 331 |
+
base=self.config.rope_theta,
|
| 332 |
+
scaling_factor=scaling_factor,
|
| 333 |
+
)
|
| 334 |
+
else:
|
| 335 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
| 336 |
+
return self.rotary_emb
|
| 337 |
+
|
| 338 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 339 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 340 |
+
|
| 341 |
+
def forward(
|
| 342 |
+
self,
|
| 343 |
+
hidden_states: torch.Tensor,
|
| 344 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 345 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 346 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 347 |
+
output_attentions: bool = False,
|
| 348 |
+
use_cache: bool = False,
|
| 349 |
+
**kwargs,
|
| 350 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 351 |
+
if 'padding_mask' in kwargs:
|
| 352 |
+
warnings.warn(
|
| 353 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 354 |
+
'Please make sure use `attention_mask` instead.`'
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
bsz, q_len, _ = hidden_states.size()
|
| 358 |
+
|
| 359 |
+
qkv_states = self.wqkv(hidden_states)
|
| 360 |
+
|
| 361 |
+
qkv_states = rearrange(
|
| 362 |
+
qkv_states,
|
| 363 |
+
'b q (h gs d) -> b q h gs d',
|
| 364 |
+
gs=2 + self.num_key_value_groups,
|
| 365 |
+
d=self.head_dim,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 369 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
| 370 |
+
key_states = qkv_states[..., -2, :]
|
| 371 |
+
value_states = qkv_states[..., -1, :]
|
| 372 |
+
|
| 373 |
+
query_states = query_states.transpose(1, 2)
|
| 374 |
+
key_states = key_states.transpose(1, 2)
|
| 375 |
+
value_states = value_states.transpose(1, 2)
|
| 376 |
+
|
| 377 |
+
kv_seq_len = key_states.shape[-2]
|
| 378 |
+
if past_key_value is not None:
|
| 379 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 380 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 381 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 382 |
+
|
| 383 |
+
if past_key_value is not None:
|
| 384 |
+
# reuse k, v, self_attention
|
| 385 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 386 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 387 |
+
|
| 388 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 389 |
+
|
| 390 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 391 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 392 |
+
|
| 393 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 394 |
+
|
| 395 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 396 |
+
raise ValueError(
|
| 397 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
| 398 |
+
f' {attn_weights.size()}'
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
if attention_mask is not None:
|
| 402 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 403 |
+
raise ValueError(
|
| 404 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
| 405 |
+
)
|
| 406 |
+
attn_weights = attn_weights + attention_mask
|
| 407 |
+
|
| 408 |
+
# upcast attention to fp32
|
| 409 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 410 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 411 |
+
|
| 412 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 413 |
+
raise ValueError(
|
| 414 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
| 415 |
+
f' {attn_output.size()}'
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 419 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 420 |
+
|
| 421 |
+
attn_output = self.wo(attn_output)
|
| 422 |
+
|
| 423 |
+
if not output_attentions:
|
| 424 |
+
attn_weights = None
|
| 425 |
+
|
| 426 |
+
return attn_output, attn_weights, past_key_value
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
| 430 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
| 431 |
+
"""
|
| 432 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
| 433 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 434 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 435 |
+
"""
|
| 436 |
+
|
| 437 |
+
def forward(
|
| 438 |
+
self,
|
| 439 |
+
hidden_states: torch.Tensor,
|
| 440 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 441 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 442 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 443 |
+
output_attentions: bool = False,
|
| 444 |
+
use_cache: bool = False,
|
| 445 |
+
**kwargs,
|
| 446 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 447 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
| 448 |
+
if 'padding_mask' in kwargs:
|
| 449 |
+
warnings.warn(
|
| 450 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 451 |
+
'Please make sure use `attention_mask` instead.`'
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
# overwrite attention_mask with padding_mask
|
| 455 |
+
attention_mask = kwargs.pop('padding_mask')
|
| 456 |
+
|
| 457 |
+
output_attentions = False
|
| 458 |
+
|
| 459 |
+
bsz, q_len, _ = hidden_states.size()
|
| 460 |
+
|
| 461 |
+
qkv_states = self.wqkv(hidden_states)
|
| 462 |
+
|
| 463 |
+
qkv_states = rearrange(
|
| 464 |
+
qkv_states,
|
| 465 |
+
'b q (h gs d) -> b q h gs d',
|
| 466 |
+
gs=2 + self.num_key_value_groups,
|
| 467 |
+
d=self.head_dim,
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 471 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
| 472 |
+
key_states = qkv_states[..., -2, :]
|
| 473 |
+
value_states = qkv_states[..., -1, :]
|
| 474 |
+
|
| 475 |
+
query_states = query_states.transpose(1, 2)
|
| 476 |
+
key_states = key_states.transpose(1, 2)
|
| 477 |
+
value_states = value_states.transpose(1, 2)
|
| 478 |
+
|
| 479 |
+
kv_seq_len = key_states.shape[-2]
|
| 480 |
+
if past_key_value is not None:
|
| 481 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 482 |
+
|
| 483 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 484 |
+
|
| 485 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 486 |
+
|
| 487 |
+
if past_key_value is not None:
|
| 488 |
+
# reuse k, v, self_attention
|
| 489 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 490 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 491 |
+
|
| 492 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 493 |
+
|
| 494 |
+
query_states = query_states.transpose(1, 2)
|
| 495 |
+
key_states = key_states.transpose(1, 2)
|
| 496 |
+
value_states = value_states.transpose(1, 2)
|
| 497 |
+
|
| 498 |
+
attn_output = self._flash_attention_forward(
|
| 499 |
+
query_states, key_states, value_states, attention_mask, q_len
|
| 500 |
+
)
|
| 501 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 502 |
+
attn_output = self.wo(attn_output)
|
| 503 |
+
|
| 504 |
+
if not output_attentions:
|
| 505 |
+
attn_weights = None
|
| 506 |
+
|
| 507 |
+
return attn_output, attn_weights, past_key_value
|
| 508 |
+
|
| 509 |
+
def _flash_attention_forward(
|
| 510 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 511 |
+
):
|
| 512 |
+
"""
|
| 513 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 514 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 515 |
+
|
| 516 |
+
Args:
|
| 517 |
+
query_states (`torch.Tensor`):
|
| 518 |
+
Input query states to be passed to Flash Attention API
|
| 519 |
+
key_states (`torch.Tensor`):
|
| 520 |
+
Input key states to be passed to Flash Attention API
|
| 521 |
+
value_states (`torch.Tensor`):
|
| 522 |
+
Input value states to be passed to Flash Attention API
|
| 523 |
+
attention_mask (`torch.Tensor`):
|
| 524 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 525 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 526 |
+
dropout (`int`, *optional*):
|
| 527 |
+
Attention dropout
|
| 528 |
+
softmax_scale (`float`, *optional*):
|
| 529 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 530 |
+
"""
|
| 531 |
+
# Contains at least one padding token in the sequence
|
| 532 |
+
causal = self.is_causal and query_length != 1
|
| 533 |
+
if attention_mask is not None:
|
| 534 |
+
batch_size = query_states.shape[0]
|
| 535 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
| 536 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 540 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 541 |
+
|
| 542 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 543 |
+
query_states,
|
| 544 |
+
key_states,
|
| 545 |
+
value_states,
|
| 546 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 547 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 548 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 549 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 550 |
+
dropout_p=dropout,
|
| 551 |
+
softmax_scale=softmax_scale,
|
| 552 |
+
causal=causal,
|
| 553 |
+
)
|
| 554 |
+
|
| 555 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 556 |
+
else:
|
| 557 |
+
attn_output = flash_attn_func(
|
| 558 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
return attn_output
|
| 562 |
+
|
| 563 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 564 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 565 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 566 |
+
|
| 567 |
+
key_layer = index_first_axis(
|
| 568 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 569 |
+
)
|
| 570 |
+
value_layer = index_first_axis(
|
| 571 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
if query_length == kv_seq_len:
|
| 575 |
+
query_layer = index_first_axis(
|
| 576 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 577 |
+
)
|
| 578 |
+
cu_seqlens_q = cu_seqlens_k
|
| 579 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 580 |
+
indices_q = indices_k
|
| 581 |
+
elif query_length == 1:
|
| 582 |
+
max_seqlen_in_batch_q = 1
|
| 583 |
+
cu_seqlens_q = torch.arange(
|
| 584 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 585 |
+
) # There is a memcpy here, that is very bad.
|
| 586 |
+
indices_q = cu_seqlens_q[:-1]
|
| 587 |
+
query_layer = query_layer.squeeze(1)
|
| 588 |
+
else:
|
| 589 |
+
# The -q_len: slice assumes left padding.
|
| 590 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 591 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 592 |
+
|
| 593 |
+
return (
|
| 594 |
+
query_layer,
|
| 595 |
+
key_layer,
|
| 596 |
+
value_layer,
|
| 597 |
+
indices_q.to(torch.int64),
|
| 598 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 599 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
| 604 |
+
'eager': InternLM2Attention,
|
| 605 |
+
'flash_attention_2': InternLM2FlashAttention2,
|
| 606 |
+
}
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
| 610 |
+
class InternLM2DecoderLayer(nn.Module):
|
| 611 |
+
def __init__(self, config: InternLM2Config):
|
| 612 |
+
super().__init__()
|
| 613 |
+
self.hidden_size = config.hidden_size
|
| 614 |
+
|
| 615 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
| 616 |
+
|
| 617 |
+
self.feed_forward = InternLM2MLP(config)
|
| 618 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 619 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 620 |
+
|
| 621 |
+
def forward(
|
| 622 |
+
self,
|
| 623 |
+
hidden_states: torch.Tensor,
|
| 624 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 625 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 626 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 627 |
+
output_attentions: Optional[bool] = False,
|
| 628 |
+
use_cache: Optional[bool] = False,
|
| 629 |
+
**kwargs,
|
| 630 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 631 |
+
"""
|
| 632 |
+
Args:
|
| 633 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 634 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 635 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 636 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 637 |
+
output_attentions (`bool`, *optional*):
|
| 638 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 639 |
+
returned tensors for more detail.
|
| 640 |
+
use_cache (`bool`, *optional*):
|
| 641 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 642 |
+
(see `past_key_values`).
|
| 643 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 644 |
+
"""
|
| 645 |
+
if 'padding_mask' in kwargs:
|
| 646 |
+
warnings.warn(
|
| 647 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 648 |
+
'Please make sure use `attention_mask` instead.`'
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
residual = hidden_states
|
| 652 |
+
|
| 653 |
+
hidden_states = self.attention_norm(hidden_states)
|
| 654 |
+
|
| 655 |
+
# Self Attention
|
| 656 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
| 657 |
+
hidden_states=hidden_states,
|
| 658 |
+
attention_mask=attention_mask,
|
| 659 |
+
position_ids=position_ids,
|
| 660 |
+
past_key_value=past_key_value,
|
| 661 |
+
output_attentions=output_attentions,
|
| 662 |
+
use_cache=use_cache,
|
| 663 |
+
**kwargs,
|
| 664 |
+
)
|
| 665 |
+
hidden_states = residual + hidden_states
|
| 666 |
+
|
| 667 |
+
# Fully Connected
|
| 668 |
+
residual = hidden_states
|
| 669 |
+
hidden_states = self.ffn_norm(hidden_states)
|
| 670 |
+
hidden_states = self.feed_forward(hidden_states)
|
| 671 |
+
hidden_states = residual + hidden_states
|
| 672 |
+
|
| 673 |
+
outputs = (hidden_states,)
|
| 674 |
+
|
| 675 |
+
if output_attentions:
|
| 676 |
+
outputs += (self_attn_weights,)
|
| 677 |
+
|
| 678 |
+
if use_cache:
|
| 679 |
+
outputs += (present_key_value,)
|
| 680 |
+
|
| 681 |
+
return outputs
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
InternLM2_START_DOCSTRING = r"""
|
| 685 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 686 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 687 |
+
etc.)
|
| 688 |
+
|
| 689 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 690 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 691 |
+
and behavior.
|
| 692 |
+
|
| 693 |
+
Parameters:
|
| 694 |
+
config ([`InternLM2Config`]):
|
| 695 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 696 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 697 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 698 |
+
"""
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
| 702 |
+
@add_start_docstrings(
|
| 703 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
| 704 |
+
InternLM2_START_DOCSTRING,
|
| 705 |
+
)
|
| 706 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
| 707 |
+
config_class = InternLM2Config
|
| 708 |
+
base_model_prefix = 'model'
|
| 709 |
+
supports_gradient_checkpointing = True
|
| 710 |
+
_no_split_modules = ['InternLM2DecoderLayer']
|
| 711 |
+
_skip_keys_device_placement = 'past_key_values'
|
| 712 |
+
_supports_flash_attn_2 = True
|
| 713 |
+
|
| 714 |
+
def _init_weights(self, module):
|
| 715 |
+
std = self.config.initializer_range
|
| 716 |
+
if isinstance(module, nn.Linear):
|
| 717 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 718 |
+
if module.bias is not None:
|
| 719 |
+
module.bias.data.zero_()
|
| 720 |
+
elif isinstance(module, nn.Embedding):
|
| 721 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 722 |
+
if module.padding_idx is not None:
|
| 723 |
+
module.weight.data[module.padding_idx].zero_()
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
| 727 |
+
Args:
|
| 728 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 729 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 730 |
+
it.
|
| 731 |
+
|
| 732 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 733 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 734 |
+
|
| 735 |
+
[What are input IDs?](../glossary#input-ids)
|
| 736 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 737 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 738 |
+
|
| 739 |
+
- 1 for tokens that are **not masked**,
|
| 740 |
+
- 0 for tokens that are **masked**.
|
| 741 |
+
|
| 742 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 743 |
+
|
| 744 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 745 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 746 |
+
|
| 747 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 748 |
+
`past_key_values`).
|
| 749 |
+
|
| 750 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 751 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 752 |
+
information on the default strategy.
|
| 753 |
+
|
| 754 |
+
- 1 indicates the head is **not masked**,
|
| 755 |
+
- 0 indicates the head is **masked**.
|
| 756 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 757 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 758 |
+
config.n_positions - 1]`.
|
| 759 |
+
|
| 760 |
+
[What are position IDs?](../glossary#position-ids)
|
| 761 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
| 762 |
+
when `config.use_cache=True`):
|
| 763 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 764 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 765 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
| 766 |
+
|
| 767 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 768 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 769 |
+
|
| 770 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 771 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 772 |
+
of shape `(batch_size, sequence_length)`.
|
| 773 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 774 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 775 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 776 |
+
model's internal embedding lookup matrix.
|
| 777 |
+
use_cache (`bool`, *optional*):
|
| 778 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 779 |
+
`past_key_values`).
|
| 780 |
+
output_attentions (`bool`, *optional*):
|
| 781 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 782 |
+
tensors for more detail.
|
| 783 |
+
output_hidden_states (`bool`, *optional*):
|
| 784 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 785 |
+
more detail.
|
| 786 |
+
return_dict (`bool`, *optional*):
|
| 787 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 788 |
+
"""
|
| 789 |
+
|
| 790 |
+
|
| 791 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
| 792 |
+
@add_start_docstrings(
|
| 793 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
| 794 |
+
InternLM2_START_DOCSTRING,
|
| 795 |
+
)
|
| 796 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
| 797 |
+
"""
|
| 798 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
| 799 |
+
|
| 800 |
+
Args:
|
| 801 |
+
config: InternLM2Config
|
| 802 |
+
"""
|
| 803 |
+
|
| 804 |
+
_auto_class = 'AutoModel'
|
| 805 |
+
|
| 806 |
+
def __init__(self, config: InternLM2Config):
|
| 807 |
+
super().__init__(config)
|
| 808 |
+
self.padding_idx = config.pad_token_id
|
| 809 |
+
self.vocab_size = config.vocab_size
|
| 810 |
+
self.config = config
|
| 811 |
+
if not has_flash_attn:
|
| 812 |
+
self.config.attn_implementation = 'eager'
|
| 813 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
| 814 |
+
|
| 815 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 816 |
+
|
| 817 |
+
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 818 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 819 |
+
|
| 820 |
+
self.gradient_checkpointing = False
|
| 821 |
+
# Initialize weights and apply final processing
|
| 822 |
+
self.post_init()
|
| 823 |
+
|
| 824 |
+
def get_input_embeddings(self):
|
| 825 |
+
return self.tok_embeddings
|
| 826 |
+
|
| 827 |
+
def set_input_embeddings(self, value):
|
| 828 |
+
self.tok_embeddings = value
|
| 829 |
+
|
| 830 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 831 |
+
# create causal mask
|
| 832 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 833 |
+
combined_attention_mask = None
|
| 834 |
+
if input_shape[-1] > 1:
|
| 835 |
+
combined_attention_mask = _make_causal_mask(
|
| 836 |
+
input_shape,
|
| 837 |
+
inputs_embeds.dtype,
|
| 838 |
+
device=inputs_embeds.device,
|
| 839 |
+
past_key_values_length=past_key_values_length,
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
if attention_mask is not None:
|
| 843 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 844 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 845 |
+
inputs_embeds.device
|
| 846 |
+
)
|
| 847 |
+
combined_attention_mask = (
|
| 848 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
return combined_attention_mask
|
| 852 |
+
|
| 853 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 854 |
+
def forward(
|
| 855 |
+
self,
|
| 856 |
+
input_ids: torch.LongTensor = None,
|
| 857 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 858 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 859 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 860 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 861 |
+
use_cache: Optional[bool] = None,
|
| 862 |
+
output_attentions: Optional[bool] = None,
|
| 863 |
+
output_hidden_states: Optional[bool] = None,
|
| 864 |
+
return_dict: Optional[bool] = None,
|
| 865 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 866 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 867 |
+
output_hidden_states = (
|
| 868 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 869 |
+
)
|
| 870 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 871 |
+
|
| 872 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 873 |
+
|
| 874 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
| 875 |
+
_import_flash_attn()
|
| 876 |
+
|
| 877 |
+
# retrieve input_ids and inputs_embeds
|
| 878 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 879 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
| 880 |
+
elif input_ids is not None:
|
| 881 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 882 |
+
elif inputs_embeds is not None:
|
| 883 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 884 |
+
else:
|
| 885 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
| 886 |
+
|
| 887 |
+
seq_length_with_past = seq_length
|
| 888 |
+
past_key_values_length = 0
|
| 889 |
+
if past_key_values is not None:
|
| 890 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 891 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 892 |
+
|
| 893 |
+
if position_ids is None:
|
| 894 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 895 |
+
position_ids = torch.arange(
|
| 896 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 897 |
+
)
|
| 898 |
+
position_ids = position_ids.unsqueeze(0)
|
| 899 |
+
|
| 900 |
+
if inputs_embeds is None:
|
| 901 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
| 902 |
+
|
| 903 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
| 904 |
+
# 2d mask is passed through the layers
|
| 905 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 906 |
+
else:
|
| 907 |
+
if attention_mask is None:
|
| 908 |
+
attention_mask = torch.ones(
|
| 909 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 910 |
+
)
|
| 911 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 912 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 913 |
+
)
|
| 914 |
+
|
| 915 |
+
# embed positions
|
| 916 |
+
hidden_states = inputs_embeds
|
| 917 |
+
|
| 918 |
+
if self.gradient_checkpointing and self.training:
|
| 919 |
+
if use_cache:
|
| 920 |
+
logger.warning_once(
|
| 921 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
| 922 |
+
)
|
| 923 |
+
use_cache = False
|
| 924 |
+
|
| 925 |
+
# decoder layers
|
| 926 |
+
all_hidden_states = () if output_hidden_states else None
|
| 927 |
+
all_self_attns = () if output_attentions else None
|
| 928 |
+
next_decoder_cache = () if use_cache else None
|
| 929 |
+
|
| 930 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 931 |
+
if output_hidden_states:
|
| 932 |
+
all_hidden_states += (hidden_states,)
|
| 933 |
+
|
| 934 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 935 |
+
|
| 936 |
+
if self.gradient_checkpointing and self.training:
|
| 937 |
+
|
| 938 |
+
def create_custom_forward(module):
|
| 939 |
+
def custom_forward(*inputs):
|
| 940 |
+
# None for past_key_value
|
| 941 |
+
return module(*inputs, output_attentions, None)
|
| 942 |
+
|
| 943 |
+
return custom_forward
|
| 944 |
+
|
| 945 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 946 |
+
create_custom_forward(decoder_layer),
|
| 947 |
+
hidden_states,
|
| 948 |
+
attention_mask,
|
| 949 |
+
position_ids,
|
| 950 |
+
None,
|
| 951 |
+
)
|
| 952 |
+
else:
|
| 953 |
+
layer_outputs = decoder_layer(
|
| 954 |
+
hidden_states,
|
| 955 |
+
attention_mask=attention_mask,
|
| 956 |
+
position_ids=position_ids,
|
| 957 |
+
past_key_value=past_key_value,
|
| 958 |
+
output_attentions=output_attentions,
|
| 959 |
+
use_cache=use_cache,
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
hidden_states = layer_outputs[0]
|
| 963 |
+
|
| 964 |
+
if use_cache:
|
| 965 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 966 |
+
|
| 967 |
+
if output_attentions:
|
| 968 |
+
all_self_attns += (layer_outputs[1],)
|
| 969 |
+
|
| 970 |
+
hidden_states = self.norm(hidden_states)
|
| 971 |
+
|
| 972 |
+
# add hidden states from the last decoder layer
|
| 973 |
+
if output_hidden_states:
|
| 974 |
+
all_hidden_states += (hidden_states,)
|
| 975 |
+
|
| 976 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 977 |
+
if not return_dict:
|
| 978 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 979 |
+
return BaseModelOutputWithPast(
|
| 980 |
+
last_hidden_state=hidden_states,
|
| 981 |
+
past_key_values=next_cache,
|
| 982 |
+
hidden_states=all_hidden_states,
|
| 983 |
+
attentions=all_self_attns,
|
| 984 |
+
)
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
| 988 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
| 989 |
+
_auto_class = 'AutoModelForCausalLM'
|
| 990 |
+
|
| 991 |
+
_tied_weights_keys = ['output.weight']
|
| 992 |
+
|
| 993 |
+
def __init__(self, config):
|
| 994 |
+
super().__init__(config)
|
| 995 |
+
self.model = InternLM2Model(config)
|
| 996 |
+
self.vocab_size = config.vocab_size
|
| 997 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 998 |
+
|
| 999 |
+
# Initialize weights and apply final processing
|
| 1000 |
+
self.post_init()
|
| 1001 |
+
|
| 1002 |
+
def get_input_embeddings(self):
|
| 1003 |
+
return self.model.tok_embeddings
|
| 1004 |
+
|
| 1005 |
+
def set_input_embeddings(self, value):
|
| 1006 |
+
self.model.tok_embeddings = value
|
| 1007 |
+
|
| 1008 |
+
def get_output_embeddings(self):
|
| 1009 |
+
return self.output
|
| 1010 |
+
|
| 1011 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1012 |
+
self.output = new_embeddings
|
| 1013 |
+
|
| 1014 |
+
def set_decoder(self, decoder):
|
| 1015 |
+
self.model = decoder
|
| 1016 |
+
|
| 1017 |
+
def get_decoder(self):
|
| 1018 |
+
return self.model
|
| 1019 |
+
|
| 1020 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 1021 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1022 |
+
def forward(
|
| 1023 |
+
self,
|
| 1024 |
+
input_ids: torch.LongTensor = None,
|
| 1025 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1026 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1027 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1028 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1029 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1030 |
+
use_cache: Optional[bool] = None,
|
| 1031 |
+
output_attentions: Optional[bool] = None,
|
| 1032 |
+
output_hidden_states: Optional[bool] = None,
|
| 1033 |
+
return_dict: Optional[bool] = None,
|
| 1034 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1035 |
+
r"""
|
| 1036 |
+
Args:
|
| 1037 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1038 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1039 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1040 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1041 |
+
|
| 1042 |
+
Returns:
|
| 1043 |
+
|
| 1044 |
+
Example:
|
| 1045 |
+
|
| 1046 |
+
```python
|
| 1047 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
| 1048 |
+
|
| 1049 |
+
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1050 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1051 |
+
|
| 1052 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1053 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1054 |
+
|
| 1055 |
+
>>> # Generate
|
| 1056 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1057 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1058 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1059 |
+
```"""
|
| 1060 |
+
|
| 1061 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1062 |
+
output_hidden_states = (
|
| 1063 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1064 |
+
)
|
| 1065 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1066 |
+
|
| 1067 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1068 |
+
outputs = self.model(
|
| 1069 |
+
input_ids=input_ids,
|
| 1070 |
+
attention_mask=attention_mask,
|
| 1071 |
+
position_ids=position_ids,
|
| 1072 |
+
past_key_values=past_key_values,
|
| 1073 |
+
inputs_embeds=inputs_embeds,
|
| 1074 |
+
use_cache=use_cache,
|
| 1075 |
+
output_attentions=output_attentions,
|
| 1076 |
+
output_hidden_states=output_hidden_states,
|
| 1077 |
+
return_dict=return_dict,
|
| 1078 |
+
)
|
| 1079 |
+
|
| 1080 |
+
hidden_states = outputs[0]
|
| 1081 |
+
logits = self.output(hidden_states)
|
| 1082 |
+
logits = logits.float()
|
| 1083 |
+
|
| 1084 |
+
loss = None
|
| 1085 |
+
if labels is not None:
|
| 1086 |
+
# Shift so that tokens < n predict n
|
| 1087 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1088 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1089 |
+
# Flatten the tokens
|
| 1090 |
+
loss_fct = CrossEntropyLoss()
|
| 1091 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1092 |
+
shift_labels = shift_labels.view(-1)
|
| 1093 |
+
# Enable model parallelism
|
| 1094 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1095 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1096 |
+
|
| 1097 |
+
if not return_dict:
|
| 1098 |
+
output = (logits,) + outputs[1:]
|
| 1099 |
+
return (loss,) + output if loss is not None else output
|
| 1100 |
+
|
| 1101 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1102 |
+
output = CausalLMOutputWithPast(
|
| 1103 |
+
loss=loss,
|
| 1104 |
+
logits=logits,
|
| 1105 |
+
past_key_values=outputs.past_key_values,
|
| 1106 |
+
hidden_states=outputs.hidden_states,
|
| 1107 |
+
attentions=outputs.attentions,
|
| 1108 |
+
)
|
| 1109 |
+
output['logits'] = output['logits'].to(device)
|
| 1110 |
+
return output
|
| 1111 |
+
|
| 1112 |
+
def prepare_inputs_for_generation(
|
| 1113 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 1114 |
+
):
|
| 1115 |
+
if past_key_values is not None:
|
| 1116 |
+
past_length = past_key_values[0][0].shape[2]
|
| 1117 |
+
|
| 1118 |
+
# Some generation methods already pass only the last input ID
|
| 1119 |
+
if input_ids.shape[1] > past_length:
|
| 1120 |
+
remove_prefix_length = past_length
|
| 1121 |
+
else:
|
| 1122 |
+
# Default to old behavior: keep only final ID
|
| 1123 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 1124 |
+
|
| 1125 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 1126 |
+
|
| 1127 |
+
position_ids = kwargs.get('position_ids', None)
|
| 1128 |
+
if attention_mask is not None and position_ids is None:
|
| 1129 |
+
# create position_ids on the fly for batch generation
|
| 1130 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1131 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1132 |
+
if past_key_values:
|
| 1133 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1134 |
+
|
| 1135 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1136 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1137 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 1138 |
+
else:
|
| 1139 |
+
model_inputs = {'input_ids': input_ids}
|
| 1140 |
+
|
| 1141 |
+
model_inputs.update(
|
| 1142 |
+
{
|
| 1143 |
+
'position_ids': position_ids,
|
| 1144 |
+
'past_key_values': past_key_values,
|
| 1145 |
+
'use_cache': kwargs.get('use_cache'),
|
| 1146 |
+
'attention_mask': attention_mask,
|
| 1147 |
+
}
|
| 1148 |
+
)
|
| 1149 |
+
return model_inputs
|
| 1150 |
+
|
| 1151 |
+
@staticmethod
|
| 1152 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1153 |
+
reordered_past = ()
|
| 1154 |
+
for layer_past in past_key_values:
|
| 1155 |
+
reordered_past += (
|
| 1156 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1157 |
+
)
|
| 1158 |
+
return reordered_past
|
| 1159 |
+
|
| 1160 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
|
| 1161 |
+
if tokenizer.add_bos_token:
|
| 1162 |
+
prompt = ''
|
| 1163 |
+
else:
|
| 1164 |
+
prompt = tokenizer.bos_token
|
| 1165 |
+
if meta_instruction:
|
| 1166 |
+
prompt += f"""<|begin▁of▁sentence|>system\n{meta_instruction}<|end▁of▁sentence|>\n"""
|
| 1167 |
+
for record in history:
|
| 1168 |
+
prompt += f"""<|begin▁of▁sentence|>user\n{record[0]}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n{record[1]}<|end▁of▁sentence|>\n"""
|
| 1169 |
+
prompt += f"""<|begin▁of▁sentence|>user\n{query}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n"""
|
| 1170 |
+
return tokenizer([prompt], return_tensors='pt')
|
| 1171 |
+
|
| 1172 |
+
@torch.no_grad()
|
| 1173 |
+
def chat(
|
| 1174 |
+
self,
|
| 1175 |
+
tokenizer,
|
| 1176 |
+
query: str,
|
| 1177 |
+
history: List[Tuple[str, str]] = [],
|
| 1178 |
+
streamer: Optional[BaseStreamer] = None,
|
| 1179 |
+
max_new_tokens: int = 1024,
|
| 1180 |
+
do_sample: bool = True,
|
| 1181 |
+
temperature: float = 0.8,
|
| 1182 |
+
top_p: float = 0.8,
|
| 1183 |
+
meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
|
| 1184 |
+
'- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
|
| 1185 |
+
'- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
|
| 1186 |
+
**kwargs,
|
| 1187 |
+
):
|
| 1188 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
| 1189 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
| 1190 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
| 1191 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|end▁of▁sentence|>'])[0]]
|
| 1192 |
+
outputs = self.generate(
|
| 1193 |
+
**inputs,
|
| 1194 |
+
streamer=streamer,
|
| 1195 |
+
max_new_tokens=max_new_tokens,
|
| 1196 |
+
do_sample=do_sample,
|
| 1197 |
+
temperature=temperature,
|
| 1198 |
+
top_p=top_p,
|
| 1199 |
+
eos_token_id=eos_token_id,
|
| 1200 |
+
**kwargs,
|
| 1201 |
+
)
|
| 1202 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
|
| 1203 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
| 1204 |
+
response = response.split('<|end▁of▁sentence|>')[0]
|
| 1205 |
+
history = history + [(query, response)]
|
| 1206 |
+
return response, history
|
| 1207 |
+
|
| 1208 |
+
@torch.no_grad()
|
| 1209 |
+
def stream_chat(
|
| 1210 |
+
self,
|
| 1211 |
+
tokenizer,
|
| 1212 |
+
query: str,
|
| 1213 |
+
history: List[Tuple[str, str]] = [],
|
| 1214 |
+
max_new_tokens: int = 1024,
|
| 1215 |
+
do_sample: bool = True,
|
| 1216 |
+
temperature: float = 0.8,
|
| 1217 |
+
top_p: float = 0.8,
|
| 1218 |
+
**kwargs,
|
| 1219 |
+
):
|
| 1220 |
+
"""
|
| 1221 |
+
Return a generator in format: (response, history)
|
| 1222 |
+
Eg.
|
| 1223 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
| 1224 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
| 1225 |
+
"""
|
| 1226 |
+
if BaseStreamer is None:
|
| 1227 |
+
raise ModuleNotFoundError(
|
| 1228 |
+
'The version of `transformers` is too low. Please make sure '
|
| 1229 |
+
'that you have installed `transformers>=4.28.0`.'
|
| 1230 |
+
)
|
| 1231 |
+
|
| 1232 |
+
response_queue = queue.Queue(maxsize=20)
|
| 1233 |
+
|
| 1234 |
+
class ChatStreamer(BaseStreamer):
|
| 1235 |
+
def __init__(self, tokenizer) -> None:
|
| 1236 |
+
super().__init__()
|
| 1237 |
+
self.tokenizer = tokenizer
|
| 1238 |
+
self.queue = response_queue
|
| 1239 |
+
self.query = query
|
| 1240 |
+
self.history = history
|
| 1241 |
+
self.response = ''
|
| 1242 |
+
self.cache = []
|
| 1243 |
+
self.received_inputs = False
|
| 1244 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
| 1245 |
+
|
| 1246 |
+
def put(self, value):
|
| 1247 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
| 1248 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
| 1249 |
+
elif len(value.shape) > 1:
|
| 1250 |
+
value = value[0]
|
| 1251 |
+
|
| 1252 |
+
if not self.received_inputs:
|
| 1253 |
+
# The first received value is input_ids, ignore here
|
| 1254 |
+
self.received_inputs = True
|
| 1255 |
+
return
|
| 1256 |
+
|
| 1257 |
+
self.cache.extend(value.tolist())
|
| 1258 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
| 1259 |
+
if token.strip() != '<|end▁of▁sentence|>':
|
| 1260 |
+
self.response = self.response + token
|
| 1261 |
+
history = self.history + [(self.query, self.response)]
|
| 1262 |
+
self.queue.put((self.response, history))
|
| 1263 |
+
self.cache = []
|
| 1264 |
+
else:
|
| 1265 |
+
self.end()
|
| 1266 |
+
|
| 1267 |
+
def end(self):
|
| 1268 |
+
self.queue.put(None)
|
| 1269 |
+
|
| 1270 |
+
def stream_producer():
|
| 1271 |
+
return self.chat(
|
| 1272 |
+
tokenizer=tokenizer,
|
| 1273 |
+
query=query,
|
| 1274 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
| 1275 |
+
history=history,
|
| 1276 |
+
max_new_tokens=max_new_tokens,
|
| 1277 |
+
do_sample=do_sample,
|
| 1278 |
+
temperature=temperature,
|
| 1279 |
+
top_p=top_p,
|
| 1280 |
+
**kwargs,
|
| 1281 |
+
)
|
| 1282 |
+
|
| 1283 |
+
def consumer():
|
| 1284 |
+
producer = threading.Thread(target=stream_producer)
|
| 1285 |
+
producer.start()
|
| 1286 |
+
while True:
|
| 1287 |
+
res = response_queue.get()
|
| 1288 |
+
if res is None:
|
| 1289 |
+
return
|
| 1290 |
+
yield res
|
| 1291 |
+
|
| 1292 |
+
return consumer()
|
| 1293 |
+
|
| 1294 |
+
|
| 1295 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
| 1296 |
+
@add_start_docstrings(
|
| 1297 |
+
"""
|
| 1298 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
| 1299 |
+
|
| 1300 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
| 1301 |
+
as other causal models (e.g. GPT-2) do.
|
| 1302 |
+
|
| 1303 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1304 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1305 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1306 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1307 |
+
each row of the batch).
|
| 1308 |
+
""",
|
| 1309 |
+
InternLM2_START_DOCSTRING,
|
| 1310 |
+
)
|
| 1311 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
| 1312 |
+
def __init__(self, config):
|
| 1313 |
+
super().__init__(config)
|
| 1314 |
+
self.num_labels = config.num_labels
|
| 1315 |
+
self.model = InternLM2Model(config)
|
| 1316 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1317 |
+
|
| 1318 |
+
# Initialize weights and apply final processing
|
| 1319 |
+
self.post_init()
|
| 1320 |
+
|
| 1321 |
+
def get_input_embeddings(self):
|
| 1322 |
+
return self.model.tok_embeddings
|
| 1323 |
+
|
| 1324 |
+
def set_input_embeddings(self, value):
|
| 1325 |
+
self.model.tok_embeddings = value
|
| 1326 |
+
|
| 1327 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 1328 |
+
def forward(
|
| 1329 |
+
self,
|
| 1330 |
+
input_ids: torch.LongTensor = None,
|
| 1331 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1332 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1333 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1334 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1335 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1336 |
+
use_cache: Optional[bool] = None,
|
| 1337 |
+
output_attentions: Optional[bool] = None,
|
| 1338 |
+
output_hidden_states: Optional[bool] = None,
|
| 1339 |
+
return_dict: Optional[bool] = None,
|
| 1340 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1341 |
+
r"""
|
| 1342 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1343 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1344 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1345 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1346 |
+
"""
|
| 1347 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1348 |
+
|
| 1349 |
+
transformer_outputs = self.model(
|
| 1350 |
+
input_ids,
|
| 1351 |
+
attention_mask=attention_mask,
|
| 1352 |
+
position_ids=position_ids,
|
| 1353 |
+
past_key_values=past_key_values,
|
| 1354 |
+
inputs_embeds=inputs_embeds,
|
| 1355 |
+
use_cache=use_cache,
|
| 1356 |
+
output_attentions=output_attentions,
|
| 1357 |
+
output_hidden_states=output_hidden_states,
|
| 1358 |
+
return_dict=return_dict,
|
| 1359 |
+
)
|
| 1360 |
+
hidden_states = transformer_outputs[0]
|
| 1361 |
+
logits = self.score(hidden_states)
|
| 1362 |
+
|
| 1363 |
+
if input_ids is not None:
|
| 1364 |
+
batch_size = input_ids.shape[0]
|
| 1365 |
+
else:
|
| 1366 |
+
batch_size = inputs_embeds.shape[0]
|
| 1367 |
+
|
| 1368 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1369 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
| 1370 |
+
if self.config.pad_token_id is None:
|
| 1371 |
+
sequence_lengths = -1
|
| 1372 |
+
else:
|
| 1373 |
+
if input_ids is not None:
|
| 1374 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
| 1375 |
+
logits.device
|
| 1376 |
+
)
|
| 1377 |
+
else:
|
| 1378 |
+
sequence_lengths = -1
|
| 1379 |
+
|
| 1380 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1381 |
+
|
| 1382 |
+
loss = None
|
| 1383 |
+
if labels is not None:
|
| 1384 |
+
labels = labels.to(logits.device)
|
| 1385 |
+
if self.config.problem_type is None:
|
| 1386 |
+
if self.num_labels == 1:
|
| 1387 |
+
self.config.problem_type = 'regression'
|
| 1388 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1389 |
+
self.config.problem_type = 'single_label_classification'
|
| 1390 |
+
else:
|
| 1391 |
+
self.config.problem_type = 'multi_label_classification'
|
| 1392 |
+
|
| 1393 |
+
if self.config.problem_type == 'regression':
|
| 1394 |
+
loss_fct = MSELoss()
|
| 1395 |
+
if self.num_labels == 1:
|
| 1396 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1397 |
+
else:
|
| 1398 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1399 |
+
elif self.config.problem_type == 'single_label_classification':
|
| 1400 |
+
loss_fct = CrossEntropyLoss()
|
| 1401 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1402 |
+
elif self.config.problem_type == 'multi_label_classification':
|
| 1403 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1404 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1405 |
+
if not return_dict:
|
| 1406 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1407 |
+
return ((loss,) + output) if loss is not None else output
|
| 1408 |
+
|
| 1409 |
+
return SequenceClassifierOutputWithPast(
|
| 1410 |
+
loss=loss,
|
| 1411 |
+
logits=pooled_logits,
|
| 1412 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1413 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1414 |
+
attentions=transformer_outputs.attentions,
|
| 1415 |
+
)
|
modeling_internvl_chat.py
ADDED
|
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import warnings
|
| 8 |
+
from typing import List, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
import transformers
|
| 12 |
+
from torch import nn
|
| 13 |
+
from torch.nn import CrossEntropyLoss
|
| 14 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
| 15 |
+
LlamaTokenizer)
|
| 16 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 17 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 18 |
+
from transformers.utils import ModelOutput, logging
|
| 19 |
+
|
| 20 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
| 21 |
+
from .conversation import get_conv_template
|
| 22 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
| 23 |
+
from .modeling_internlm2 import InternLM2ForCausalLM
|
| 24 |
+
|
| 25 |
+
from transformers import Qwen2Config, Qwen2ForCausalLM
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def version_cmp(v1, v2, op='eq'):
|
| 31 |
+
import operator
|
| 32 |
+
|
| 33 |
+
from packaging import version
|
| 34 |
+
op_func = getattr(operator, op)
|
| 35 |
+
return op_func(version.parse(v1), version.parse(v2))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class InternVLChatModel(PreTrainedModel):
|
| 39 |
+
config_class = InternVLChatConfig
|
| 40 |
+
main_input_name = 'pixel_values'
|
| 41 |
+
base_model_prefix = 'language_model'
|
| 42 |
+
_supports_flash_attn_2 = True
|
| 43 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
|
| 44 |
+
|
| 45 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
| 46 |
+
super().__init__(config)
|
| 47 |
+
|
| 48 |
+
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
|
| 49 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
| 50 |
+
patch_size = config.vision_config.patch_size
|
| 51 |
+
self.patch_size = patch_size
|
| 52 |
+
self.select_layer = config.select_layer
|
| 53 |
+
self.template = config.template
|
| 54 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
| 55 |
+
self.downsample_ratio = config.downsample_ratio
|
| 56 |
+
self.ps_version = config.ps_version
|
| 57 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
| 58 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
| 59 |
+
config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
| 60 |
+
|
| 61 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
| 62 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 63 |
+
if vision_model is not None:
|
| 64 |
+
self.vision_model = vision_model
|
| 65 |
+
else:
|
| 66 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
| 67 |
+
if language_model is not None:
|
| 68 |
+
self.language_model = language_model
|
| 69 |
+
else:
|
| 70 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
| 71 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
| 72 |
+
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
| 73 |
+
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
| 74 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
| 75 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
| 76 |
+
else:
|
| 77 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
| 78 |
+
|
| 79 |
+
vit_hidden_size = config.vision_config.hidden_size
|
| 80 |
+
llm_hidden_size = config.llm_config.hidden_size
|
| 81 |
+
|
| 82 |
+
self.mlp1 = nn.Sequential(
|
| 83 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
| 84 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
| 85 |
+
nn.GELU(),
|
| 86 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
self.img_context_token_id = None
|
| 90 |
+
self.conv_template = get_conv_template(self.template)
|
| 91 |
+
self.system_message = self.conv_template.system_message
|
| 92 |
+
|
| 93 |
+
def forward(
|
| 94 |
+
self,
|
| 95 |
+
pixel_values: torch.FloatTensor,
|
| 96 |
+
input_ids: torch.LongTensor = None,
|
| 97 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 98 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 99 |
+
image_flags: Optional[torch.LongTensor] = None,
|
| 100 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 101 |
+
labels: Optional[torch.LongTensor] = None,
|
| 102 |
+
use_cache: Optional[bool] = None,
|
| 103 |
+
output_attentions: Optional[bool] = None,
|
| 104 |
+
output_hidden_states: Optional[bool] = None,
|
| 105 |
+
return_dict: Optional[bool] = None,
|
| 106 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 107 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 108 |
+
|
| 109 |
+
image_flags = image_flags.squeeze(-1)
|
| 110 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
| 111 |
+
|
| 112 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 113 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
| 114 |
+
vit_batch_size = pixel_values.shape[0]
|
| 115 |
+
|
| 116 |
+
B, N, C = input_embeds.shape
|
| 117 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 118 |
+
|
| 119 |
+
if torch.distributed.get_rank() == 0:
|
| 120 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
| 121 |
+
|
| 122 |
+
input_ids = input_ids.reshape(B * N)
|
| 123 |
+
selected = (input_ids == self.img_context_token_id)
|
| 124 |
+
try:
|
| 125 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
| 126 |
+
except Exception as e:
|
| 127 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
| 128 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
| 129 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
| 130 |
+
n_token = selected.sum()
|
| 131 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
| 132 |
+
|
| 133 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 134 |
+
|
| 135 |
+
outputs = self.language_model(
|
| 136 |
+
inputs_embeds=input_embeds,
|
| 137 |
+
attention_mask=attention_mask,
|
| 138 |
+
position_ids=position_ids,
|
| 139 |
+
past_key_values=past_key_values,
|
| 140 |
+
use_cache=use_cache,
|
| 141 |
+
output_attentions=output_attentions,
|
| 142 |
+
output_hidden_states=output_hidden_states,
|
| 143 |
+
return_dict=return_dict,
|
| 144 |
+
)
|
| 145 |
+
logits = outputs.logits
|
| 146 |
+
|
| 147 |
+
loss = None
|
| 148 |
+
if labels is not None:
|
| 149 |
+
# Shift so that tokens < n predict n
|
| 150 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 151 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 152 |
+
# Flatten the tokens
|
| 153 |
+
loss_fct = CrossEntropyLoss()
|
| 154 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
| 155 |
+
shift_labels = shift_labels.view(-1)
|
| 156 |
+
# Enable model parallelism
|
| 157 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 158 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 159 |
+
|
| 160 |
+
if not return_dict:
|
| 161 |
+
output = (logits,) + outputs[1:]
|
| 162 |
+
return (loss,) + output if loss is not None else output
|
| 163 |
+
|
| 164 |
+
return CausalLMOutputWithPast(
|
| 165 |
+
loss=loss,
|
| 166 |
+
logits=logits,
|
| 167 |
+
past_key_values=outputs.past_key_values,
|
| 168 |
+
hidden_states=outputs.hidden_states,
|
| 169 |
+
attentions=outputs.attentions,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
| 173 |
+
n, w, h, c = x.size()
|
| 174 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
| 175 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
| 176 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
| 177 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 178 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
| 179 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
| 180 |
+
int(c / (scale_factor * scale_factor)))
|
| 181 |
+
if self.ps_version == 'v1':
|
| 182 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
| 183 |
+
'which results in a transposed image.')
|
| 184 |
+
else:
|
| 185 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 186 |
+
return x
|
| 187 |
+
|
| 188 |
+
def extract_feature(self, pixel_values):
|
| 189 |
+
if self.select_layer == -1:
|
| 190 |
+
vit_embeds = self.vision_model(
|
| 191 |
+
pixel_values=pixel_values,
|
| 192 |
+
output_hidden_states=False,
|
| 193 |
+
return_dict=True).last_hidden_state
|
| 194 |
+
else:
|
| 195 |
+
vit_embeds = self.vision_model(
|
| 196 |
+
pixel_values=pixel_values,
|
| 197 |
+
output_hidden_states=True,
|
| 198 |
+
return_dict=True).hidden_states[self.select_layer]
|
| 199 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
| 200 |
+
|
| 201 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
| 202 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
| 203 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
| 204 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
| 205 |
+
vit_embeds = self.mlp1(vit_embeds)
|
| 206 |
+
return vit_embeds
|
| 207 |
+
|
| 208 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
| 209 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
| 210 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
| 211 |
+
if history is not None or return_history:
|
| 212 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
| 213 |
+
raise NotImplementedError
|
| 214 |
+
|
| 215 |
+
if image_counts is not None:
|
| 216 |
+
num_patches_list = image_counts
|
| 217 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
| 218 |
+
|
| 219 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 220 |
+
self.img_context_token_id = img_context_token_id
|
| 221 |
+
# print("##############1################")
|
| 222 |
+
# print(self.img_context_token_id)
|
| 223 |
+
# print("##############1################")
|
| 224 |
+
# exit()
|
| 225 |
+
|
| 226 |
+
if verbose and pixel_values is not None:
|
| 227 |
+
image_bs = pixel_values.shape[0]
|
| 228 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 229 |
+
|
| 230 |
+
queries = []
|
| 231 |
+
for idx, num_patches in enumerate(num_patches_list):
|
| 232 |
+
question = questions[idx]
|
| 233 |
+
if pixel_values is not None and '<image>' not in question:
|
| 234 |
+
question = '<image>\n' + question
|
| 235 |
+
template = get_conv_template(self.template)
|
| 236 |
+
template.system_message = self.system_message
|
| 237 |
+
template.append_message(template.roles[0], question)
|
| 238 |
+
template.append_message(template.roles[1], None)
|
| 239 |
+
query = template.get_prompt()
|
| 240 |
+
|
| 241 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 242 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 243 |
+
queries.append(query)
|
| 244 |
+
|
| 245 |
+
tokenizer.padding_side = 'left'
|
| 246 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
| 247 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
| 248 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
| 249 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
| 250 |
+
generation_config['eos_token_id'] = eos_token_id
|
| 251 |
+
generation_output = self.generate(
|
| 252 |
+
pixel_values=pixel_values,
|
| 253 |
+
input_ids=input_ids,
|
| 254 |
+
attention_mask=attention_mask,
|
| 255 |
+
**generation_config
|
| 256 |
+
)
|
| 257 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
| 258 |
+
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
|
| 259 |
+
return responses
|
| 260 |
+
|
| 261 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
| 262 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
| 263 |
+
verbose=False):
|
| 264 |
+
|
| 265 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
| 266 |
+
question = '<image>\n' + question
|
| 267 |
+
|
| 268 |
+
if num_patches_list is None:
|
| 269 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
| 270 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
| 271 |
+
|
| 272 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 273 |
+
self.img_context_token_id = img_context_token_id
|
| 274 |
+
# print("##############2################")
|
| 275 |
+
# print(self.img_context_token_id)
|
| 276 |
+
# print("##############2################")
|
| 277 |
+
|
| 278 |
+
template = get_conv_template(self.template)
|
| 279 |
+
template.system_message = self.system_message
|
| 280 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
| 281 |
+
# print("##############2.5################")
|
| 282 |
+
# print(template.sep.strip())
|
| 283 |
+
# print(eos_token_id)
|
| 284 |
+
# print("##############2.5################")
|
| 285 |
+
|
| 286 |
+
history = [] if history is None else history
|
| 287 |
+
for (old_question, old_answer) in history:
|
| 288 |
+
template.append_message(template.roles[0], old_question)
|
| 289 |
+
template.append_message(template.roles[1], old_answer)
|
| 290 |
+
template.append_message(template.roles[0], question)
|
| 291 |
+
template.append_message(template.roles[1], None)
|
| 292 |
+
query = template.get_prompt()
|
| 293 |
+
# print("##############3################")
|
| 294 |
+
# print(query)
|
| 295 |
+
# print("##############3################")
|
| 296 |
+
# query = """<|begin▁of▁sentence|>user
|
| 297 |
+
# <image>
|
| 298 |
+
# 图片内容是什么?<|end▁of▁sentence|>
|
| 299 |
+
# <|begin▁of▁sentence|>assistant"""
|
| 300 |
+
|
| 301 |
+
if verbose and pixel_values is not None:
|
| 302 |
+
image_bs = pixel_values.shape[0]
|
| 303 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 304 |
+
|
| 305 |
+
for num_patches in num_patches_list:
|
| 306 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 307 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 308 |
+
# print("##############4################")
|
| 309 |
+
# # print(query)
|
| 310 |
+
# print("##############4################")
|
| 311 |
+
|
| 312 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
| 313 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
| 314 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
| 315 |
+
generation_config['eos_token_id'] = eos_token_id
|
| 316 |
+
generation_output = self.generate(
|
| 317 |
+
pixel_values=pixel_values,
|
| 318 |
+
input_ids=input_ids,
|
| 319 |
+
attention_mask=attention_mask,
|
| 320 |
+
**generation_config
|
| 321 |
+
)
|
| 322 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
| 323 |
+
response = response.split(template.sep.strip())[0].strip()
|
| 324 |
+
history.append((question, response))
|
| 325 |
+
# print("###" + str(response))
|
| 326 |
+
if return_history:
|
| 327 |
+
return response, history
|
| 328 |
+
else:
|
| 329 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
| 330 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
| 331 |
+
if verbose:
|
| 332 |
+
print(query_to_print, response)
|
| 333 |
+
return response
|
| 334 |
+
|
| 335 |
+
@torch.no_grad()
|
| 336 |
+
def generate(
|
| 337 |
+
self,
|
| 338 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 339 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
| 340 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 341 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
| 342 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 343 |
+
output_hidden_states: Optional[bool] = None,
|
| 344 |
+
**generate_kwargs,
|
| 345 |
+
) -> torch.LongTensor:
|
| 346 |
+
|
| 347 |
+
assert self.img_context_token_id is not None
|
| 348 |
+
if pixel_values is not None:
|
| 349 |
+
if visual_features is not None:
|
| 350 |
+
vit_embeds = visual_features
|
| 351 |
+
else:
|
| 352 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 353 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 354 |
+
B, N, C = input_embeds.shape
|
| 355 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 356 |
+
|
| 357 |
+
input_ids = input_ids.reshape(B * N)
|
| 358 |
+
selected = (input_ids == self.img_context_token_id)
|
| 359 |
+
# print("#######################5####################")
|
| 360 |
+
# print(self.img_context_token_id)
|
| 361 |
+
# print(selected)
|
| 362 |
+
# print(selected.sum())
|
| 363 |
+
# print("#######################5####################")
|
| 364 |
+
# exit()
|
| 365 |
+
assert selected.sum() != 0
|
| 366 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
| 367 |
+
|
| 368 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 369 |
+
else:
|
| 370 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 371 |
+
|
| 372 |
+
# print("#######################6####################")
|
| 373 |
+
# print(attention_mask)
|
| 374 |
+
# print(attention_mask.sum())
|
| 375 |
+
# print(output_hidden_states)
|
| 376 |
+
# print("#######################6####################")
|
| 377 |
+
|
| 378 |
+
outputs = self.language_model.generate(
|
| 379 |
+
inputs_embeds=input_embeds,
|
| 380 |
+
attention_mask=attention_mask,
|
| 381 |
+
generation_config=generation_config,
|
| 382 |
+
output_hidden_states=output_hidden_states,
|
| 383 |
+
use_cache=True,
|
| 384 |
+
**generate_kwargs,
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
return outputs
|
modeling_skywork_chat.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
from typing import List, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch.utils.checkpoint
|
| 5 |
+
import transformers
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import CrossEntropyLoss
|
| 8 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
| 9 |
+
LlamaTokenizer)
|
| 10 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 11 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 12 |
+
from transformers.utils import ModelOutput, logging
|
| 13 |
+
|
| 14 |
+
from .configuration_skywork_chat import SkyworkChatConfig
|
| 15 |
+
from .conversation import get_conv_template
|
| 16 |
+
from .modeling_skywork_vit import SkyworkVisionModel, has_flash_attn
|
| 17 |
+
from .modeling_skywork_lm2 import SkyworkLM2ForCausalLM
|
| 18 |
+
|
| 19 |
+
from transformers import Qwen2Config, Qwen2ForCausalLM
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def version_cmp(v1, v2, op='eq'):
|
| 25 |
+
import operator
|
| 26 |
+
|
| 27 |
+
from packaging import version
|
| 28 |
+
op_func = getattr(operator, op)
|
| 29 |
+
return op_func(version.parse(v1), version.parse(v2))
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class SkyworkChatModel(PreTrainedModel):
|
| 33 |
+
config_class = SkyworkChatConfig
|
| 34 |
+
main_input_name = 'pixel_values'
|
| 35 |
+
base_model_prefix = 'language_model'
|
| 36 |
+
_supports_flash_attn_2 = True
|
| 37 |
+
_no_split_modules = ['SkyworkVisionModel', 'LlamaDecoderLayer', 'SkyworkLM2DecoderLayer']
|
| 38 |
+
|
| 39 |
+
def __init__(self, config: SkyworkChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
| 40 |
+
super().__init__(config)
|
| 41 |
+
|
| 42 |
+
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
|
| 43 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
| 44 |
+
patch_size = config.vision_config.patch_size
|
| 45 |
+
self.patch_size = patch_size
|
| 46 |
+
self.select_layer = config.select_layer
|
| 47 |
+
self.template = config.template
|
| 48 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
| 49 |
+
self.downsample_ratio = config.downsample_ratio
|
| 50 |
+
self.ps_version = config.ps_version
|
| 51 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
| 52 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
| 53 |
+
config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
| 54 |
+
|
| 55 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
| 56 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 57 |
+
if vision_model is not None:
|
| 58 |
+
self.vision_model = vision_model
|
| 59 |
+
else:
|
| 60 |
+
self.vision_model = SkyworkVisionModel(config.vision_config)
|
| 61 |
+
if language_model is not None:
|
| 62 |
+
self.language_model = language_model
|
| 63 |
+
else:
|
| 64 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
| 65 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
| 66 |
+
elif config.llm_config.architectures[0] == 'SkyworkLM2ForCausalLM':
|
| 67 |
+
self.language_model = SkyworkLM2ForCausalLM(config.llm_config)
|
| 68 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
| 69 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
| 70 |
+
else:
|
| 71 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
| 72 |
+
|
| 73 |
+
vit_hidden_size = config.vision_config.hidden_size
|
| 74 |
+
llm_hidden_size = config.llm_config.hidden_size
|
| 75 |
+
|
| 76 |
+
self.mlp1 = nn.Sequential(
|
| 77 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
| 78 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
| 79 |
+
nn.GELU(),
|
| 80 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
self.img_context_token_id = None
|
| 84 |
+
self.conv_template = get_conv_template(self.template)
|
| 85 |
+
self.system_message = self.conv_template.system_message
|
| 86 |
+
|
| 87 |
+
def forward(
|
| 88 |
+
self,
|
| 89 |
+
pixel_values: torch.FloatTensor,
|
| 90 |
+
input_ids: torch.LongTensor = None,
|
| 91 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 92 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 93 |
+
image_flags: Optional[torch.LongTensor] = None,
|
| 94 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 95 |
+
labels: Optional[torch.LongTensor] = None,
|
| 96 |
+
use_cache: Optional[bool] = None,
|
| 97 |
+
output_attentions: Optional[bool] = None,
|
| 98 |
+
output_hidden_states: Optional[bool] = None,
|
| 99 |
+
return_dict: Optional[bool] = None,
|
| 100 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 101 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 102 |
+
|
| 103 |
+
image_flags = image_flags.squeeze(-1)
|
| 104 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
| 105 |
+
|
| 106 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 107 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
| 108 |
+
vit_batch_size = pixel_values.shape[0]
|
| 109 |
+
|
| 110 |
+
B, N, C = input_embeds.shape
|
| 111 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 112 |
+
|
| 113 |
+
if torch.distributed.get_rank() == 0:
|
| 114 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
| 115 |
+
|
| 116 |
+
input_ids = input_ids.reshape(B * N)
|
| 117 |
+
selected = (input_ids == self.img_context_token_id)
|
| 118 |
+
try:
|
| 119 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
| 120 |
+
except Exception as e:
|
| 121 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
| 122 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
| 123 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
| 124 |
+
n_token = selected.sum()
|
| 125 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
| 126 |
+
|
| 127 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 128 |
+
|
| 129 |
+
outputs = self.language_model(
|
| 130 |
+
inputs_embeds=input_embeds,
|
| 131 |
+
attention_mask=attention_mask,
|
| 132 |
+
position_ids=position_ids,
|
| 133 |
+
past_key_values=past_key_values,
|
| 134 |
+
use_cache=use_cache,
|
| 135 |
+
output_attentions=output_attentions,
|
| 136 |
+
output_hidden_states=output_hidden_states,
|
| 137 |
+
return_dict=return_dict,
|
| 138 |
+
)
|
| 139 |
+
logits = outputs.logits
|
| 140 |
+
|
| 141 |
+
loss = None
|
| 142 |
+
if labels is not None:
|
| 143 |
+
# Shift so that tokens < n predict n
|
| 144 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 145 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 146 |
+
# Flatten the tokens
|
| 147 |
+
loss_fct = CrossEntropyLoss()
|
| 148 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
| 149 |
+
shift_labels = shift_labels.view(-1)
|
| 150 |
+
# Enable model parallelism
|
| 151 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 152 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 153 |
+
|
| 154 |
+
if not return_dict:
|
| 155 |
+
output = (logits,) + outputs[1:]
|
| 156 |
+
return (loss,) + output if loss is not None else output
|
| 157 |
+
|
| 158 |
+
return CausalLMOutputWithPast(
|
| 159 |
+
loss=loss,
|
| 160 |
+
logits=logits,
|
| 161 |
+
past_key_values=outputs.past_key_values,
|
| 162 |
+
hidden_states=outputs.hidden_states,
|
| 163 |
+
attentions=outputs.attentions,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
| 167 |
+
n, w, h, c = x.size()
|
| 168 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
| 169 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
| 170 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
| 171 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 172 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
| 173 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
| 174 |
+
int(c / (scale_factor * scale_factor)))
|
| 175 |
+
if self.ps_version == 'v1':
|
| 176 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
| 177 |
+
'which results in a transposed image.')
|
| 178 |
+
else:
|
| 179 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 180 |
+
return x
|
| 181 |
+
|
| 182 |
+
def extract_feature(self, pixel_values):
|
| 183 |
+
if self.select_layer == -1:
|
| 184 |
+
vit_embeds = self.vision_model(
|
| 185 |
+
pixel_values=pixel_values,
|
| 186 |
+
output_hidden_states=False,
|
| 187 |
+
return_dict=True).last_hidden_state
|
| 188 |
+
else:
|
| 189 |
+
vit_embeds = self.vision_model(
|
| 190 |
+
pixel_values=pixel_values,
|
| 191 |
+
output_hidden_states=True,
|
| 192 |
+
return_dict=True).hidden_states[self.select_layer]
|
| 193 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
| 194 |
+
|
| 195 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
| 196 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
| 197 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
| 198 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
| 199 |
+
vit_embeds = self.mlp1(vit_embeds)
|
| 200 |
+
return vit_embeds
|
| 201 |
+
|
| 202 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
| 203 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
| 204 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
| 205 |
+
if history is not None or return_history:
|
| 206 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
| 207 |
+
raise NotImplementedError
|
| 208 |
+
|
| 209 |
+
if image_counts is not None:
|
| 210 |
+
num_patches_list = image_counts
|
| 211 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
| 212 |
+
|
| 213 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 214 |
+
self.img_context_token_id = img_context_token_id
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
if verbose and pixel_values is not None:
|
| 218 |
+
image_bs = pixel_values.shape[0]
|
| 219 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 220 |
+
|
| 221 |
+
queries = []
|
| 222 |
+
for idx, num_patches in enumerate(num_patches_list):
|
| 223 |
+
question = questions[idx]
|
| 224 |
+
if pixel_values is not None and '<image>' not in question:
|
| 225 |
+
question = '<image>\n' + question
|
| 226 |
+
template = get_conv_template(self.template)
|
| 227 |
+
template.system_message = self.system_message
|
| 228 |
+
template.append_message(template.roles[0], question)
|
| 229 |
+
template.append_message(template.roles[1], None)
|
| 230 |
+
query = template.get_prompt()
|
| 231 |
+
|
| 232 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 233 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 234 |
+
queries.append(query)
|
| 235 |
+
|
| 236 |
+
tokenizer.padding_side = 'left'
|
| 237 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
| 238 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
| 239 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
| 240 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
| 241 |
+
generation_config['eos_token_id'] = eos_token_id
|
| 242 |
+
generation_output = self.generate(
|
| 243 |
+
pixel_values=pixel_values,
|
| 244 |
+
input_ids=input_ids,
|
| 245 |
+
attention_mask=attention_mask,
|
| 246 |
+
**generation_config
|
| 247 |
+
)
|
| 248 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
| 249 |
+
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
|
| 250 |
+
return responses
|
| 251 |
+
|
| 252 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
| 253 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
| 254 |
+
verbose=False):
|
| 255 |
+
|
| 256 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
| 257 |
+
question = '<image>\n' + question
|
| 258 |
+
|
| 259 |
+
if num_patches_list is None:
|
| 260 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
| 261 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
| 262 |
+
|
| 263 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 264 |
+
self.img_context_token_id = img_context_token_id
|
| 265 |
+
|
| 266 |
+
template = get_conv_template(self.template)
|
| 267 |
+
template.system_message = self.system_message
|
| 268 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
history = [] if history is None else history
|
| 272 |
+
for (old_question, old_answer) in history:
|
| 273 |
+
template.append_message(template.roles[0], old_question)
|
| 274 |
+
template.append_message(template.roles[1], old_answer)
|
| 275 |
+
template.append_message(template.roles[0], question)
|
| 276 |
+
template.append_message(template.roles[1], None)
|
| 277 |
+
query = template.get_prompt()
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
if verbose and pixel_values is not None:
|
| 281 |
+
image_bs = pixel_values.shape[0]
|
| 282 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 283 |
+
|
| 284 |
+
for num_patches in num_patches_list:
|
| 285 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 286 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
| 290 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
| 291 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
| 292 |
+
generation_config['eos_token_id'] = eos_token_id
|
| 293 |
+
generation_output = self.generate(
|
| 294 |
+
pixel_values=pixel_values,
|
| 295 |
+
input_ids=input_ids,
|
| 296 |
+
attention_mask=attention_mask,
|
| 297 |
+
**generation_config
|
| 298 |
+
)
|
| 299 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
| 300 |
+
response = response.split(template.sep.strip())[0].strip()
|
| 301 |
+
history.append((question, response))
|
| 302 |
+
|
| 303 |
+
if return_history:
|
| 304 |
+
return response, history
|
| 305 |
+
else:
|
| 306 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
| 307 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
| 308 |
+
if verbose:
|
| 309 |
+
print(query_to_print, response)
|
| 310 |
+
return response
|
| 311 |
+
|
| 312 |
+
@torch.no_grad()
|
| 313 |
+
def generate(
|
| 314 |
+
self,
|
| 315 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 316 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
| 317 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 318 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
| 319 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 320 |
+
output_hidden_states: Optional[bool] = None,
|
| 321 |
+
**generate_kwargs,
|
| 322 |
+
) -> torch.LongTensor:
|
| 323 |
+
|
| 324 |
+
assert self.img_context_token_id is not None
|
| 325 |
+
if pixel_values is not None:
|
| 326 |
+
if visual_features is not None:
|
| 327 |
+
vit_embeds = visual_features
|
| 328 |
+
else:
|
| 329 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 330 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 331 |
+
B, N, C = input_embeds.shape
|
| 332 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 333 |
+
|
| 334 |
+
input_ids = input_ids.reshape(B * N)
|
| 335 |
+
selected = (input_ids == self.img_context_token_id)
|
| 336 |
+
|
| 337 |
+
assert selected.sum() != 0
|
| 338 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
| 339 |
+
|
| 340 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 341 |
+
else:
|
| 342 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
outputs = self.language_model.generate(
|
| 346 |
+
inputs_embeds=input_embeds,
|
| 347 |
+
attention_mask=attention_mask,
|
| 348 |
+
generation_config=generation_config,
|
| 349 |
+
output_hidden_states=output_hidden_states,
|
| 350 |
+
use_cache=True,
|
| 351 |
+
**generate_kwargs,
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
return outputs
|
modeling_skywork_lm2.py
ADDED
|
@@ -0,0 +1,1403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The Skywork team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" PyTorch SkyworkLM2 model."""
|
| 17 |
+
import math
|
| 18 |
+
import queue
|
| 19 |
+
import threading
|
| 20 |
+
import warnings
|
| 21 |
+
from typing import List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
import torch.utils.checkpoint
|
| 26 |
+
from einops import rearrange
|
| 27 |
+
from torch import nn
|
| 28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
+
from transformers.activations import ACT2FN
|
| 30 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
| 31 |
+
CausalLMOutputWithPast,
|
| 32 |
+
SequenceClassifierOutputWithPast)
|
| 33 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 34 |
+
from transformers.utils import (add_start_docstrings,
|
| 35 |
+
add_start_docstrings_to_model_forward, logging,
|
| 36 |
+
replace_return_docstrings)
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
from transformers.generation.streamers import BaseStreamer
|
| 40 |
+
except:
|
| 41 |
+
BaseStreamer = None
|
| 42 |
+
|
| 43 |
+
from .configuration_skywork_lm2 import SkyworkLM2Config
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__)
|
| 46 |
+
|
| 47 |
+
_CONFIG_FOR_DOC = 'SkyworkLM2Config'
|
| 48 |
+
|
| 49 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
| 50 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
| 51 |
+
try:
|
| 52 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
| 53 |
+
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
|
| 54 |
+
from flash_attn.bert_padding import index_first_axis as _index_first_axis
|
| 55 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
| 56 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
| 57 |
+
|
| 58 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 59 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 60 |
+
has_flash_attn = True
|
| 61 |
+
except:
|
| 62 |
+
has_flash_attn = False
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def _import_flash_attn():
|
| 66 |
+
global flash_attn_func, flash_attn_varlen_func
|
| 67 |
+
global pad_input, index_first_axis, unpad_input
|
| 68 |
+
try:
|
| 69 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
| 70 |
+
from flash_attn import \
|
| 71 |
+
flash_attn_varlen_func as _flash_attn_varlen_func
|
| 72 |
+
from flash_attn.bert_padding import \
|
| 73 |
+
index_first_axis as _index_first_axis
|
| 74 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
| 75 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
| 76 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 77 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 78 |
+
except ImportError:
|
| 79 |
+
raise ImportError('flash_attn is not installed.')
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 83 |
+
def _get_unpad_data(attention_mask):
|
| 84 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 85 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 86 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 87 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 88 |
+
return (
|
| 89 |
+
indices,
|
| 90 |
+
cu_seqlens,
|
| 91 |
+
max_seqlen_in_batch,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 96 |
+
def _make_causal_mask(
|
| 97 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 98 |
+
):
|
| 99 |
+
"""
|
| 100 |
+
Make causal mask used for bi-directional self-attention.
|
| 101 |
+
"""
|
| 102 |
+
bsz, tgt_len = input_ids_shape
|
| 103 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
| 104 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 105 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 106 |
+
mask = mask.to(dtype)
|
| 107 |
+
|
| 108 |
+
if past_key_values_length > 0:
|
| 109 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 110 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 114 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 115 |
+
"""
|
| 116 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 117 |
+
"""
|
| 118 |
+
bsz, src_len = mask.size()
|
| 119 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 120 |
+
|
| 121 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 122 |
+
|
| 123 |
+
inverted_mask = 1.0 - expanded_mask
|
| 124 |
+
|
| 125 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->SkyworkLM2
|
| 129 |
+
class SkyworkLM2RMSNorm(nn.Module):
|
| 130 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 131 |
+
"""
|
| 132 |
+
SkyworkLM2RMSNorm is equivalent to T5LayerNorm
|
| 133 |
+
"""
|
| 134 |
+
super().__init__()
|
| 135 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 136 |
+
self.variance_epsilon = eps
|
| 137 |
+
|
| 138 |
+
def forward(self, hidden_states):
|
| 139 |
+
input_dtype = hidden_states.dtype
|
| 140 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 141 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 142 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 143 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->SkyworkLM2
|
| 147 |
+
class SkyworkLM2RotaryEmbedding(nn.Module):
|
| 148 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 149 |
+
super().__init__()
|
| 150 |
+
|
| 151 |
+
self.dim = dim
|
| 152 |
+
self.max_position_embeddings = max_position_embeddings
|
| 153 |
+
self.base = base
|
| 154 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 155 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 156 |
+
|
| 157 |
+
# Build here to make `torch.jit.trace` work.
|
| 158 |
+
self._set_cos_sin_cache(
|
| 159 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 163 |
+
self.max_seq_len_cached = seq_len
|
| 164 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 165 |
+
|
| 166 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 167 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 168 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 169 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 170 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 171 |
+
|
| 172 |
+
def forward(self, x, seq_len=None):
|
| 173 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 174 |
+
if seq_len > self.max_seq_len_cached:
|
| 175 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
| 176 |
+
|
| 177 |
+
return (
|
| 178 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
| 179 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->SkyworkLM2
|
| 184 |
+
class SkyworkLM2LinearScalingRotaryEmbedding(SkyworkLM2RotaryEmbedding):
|
| 185 |
+
|
| 186 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 187 |
+
self.scaling_factor = scaling_factor
|
| 188 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 189 |
+
|
| 190 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 191 |
+
self.max_seq_len_cached = seq_len
|
| 192 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 193 |
+
t = t / self.scaling_factor
|
| 194 |
+
|
| 195 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 196 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 197 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 198 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 199 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->SkyworkLM2
|
| 203 |
+
class SkyworkLM2DynamicNTKScalingRotaryEmbedding(SkyworkLM2RotaryEmbedding):
|
| 204 |
+
|
| 205 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 206 |
+
self.scaling_factor = scaling_factor
|
| 207 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 208 |
+
|
| 209 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 210 |
+
self.max_seq_len_cached = seq_len
|
| 211 |
+
|
| 212 |
+
if seq_len > self.max_position_embeddings:
|
| 213 |
+
base = self.base * (
|
| 214 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 215 |
+
) ** (self.dim / (self.dim - 2))
|
| 216 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 217 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 218 |
+
|
| 219 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 220 |
+
|
| 221 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 222 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 223 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 224 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 225 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
| 229 |
+
def rotate_half(x):
|
| 230 |
+
"""Rotates half the hidden dims of the input."""
|
| 231 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 232 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 233 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
| 237 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
| 238 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
| 239 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
| 240 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
| 241 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 242 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 243 |
+
return q_embed, k_embed
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class SkyworkLM2MLP(nn.Module):
|
| 247 |
+
def __init__(self, config):
|
| 248 |
+
super().__init__()
|
| 249 |
+
self.config = config
|
| 250 |
+
self.hidden_size = config.hidden_size
|
| 251 |
+
self.intermediate_size = config.intermediate_size
|
| 252 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 253 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 254 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 255 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 256 |
+
|
| 257 |
+
def forward(self, x):
|
| 258 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
| 259 |
+
|
| 260 |
+
return down_proj
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
| 264 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 265 |
+
"""
|
| 266 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 267 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 268 |
+
"""
|
| 269 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 270 |
+
if n_rep == 1:
|
| 271 |
+
return hidden_states
|
| 272 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 273 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
| 277 |
+
class SkyworkLM2Attention(nn.Module):
|
| 278 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 279 |
+
|
| 280 |
+
def __init__(self, config: SkyworkLM2Config):
|
| 281 |
+
super().__init__()
|
| 282 |
+
self.config = config
|
| 283 |
+
self.hidden_size = config.hidden_size
|
| 284 |
+
self.num_heads = config.num_attention_heads
|
| 285 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 286 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 287 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 288 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 289 |
+
self.is_causal = True
|
| 290 |
+
|
| 291 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 292 |
+
raise ValueError(
|
| 293 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
| 294 |
+
f' and `num_heads`: {self.num_heads}).'
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
self.wqkv = nn.Linear(
|
| 298 |
+
self.hidden_size,
|
| 299 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
| 300 |
+
bias=config.bias,
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
| 304 |
+
self._init_rope()
|
| 305 |
+
|
| 306 |
+
def _init_rope(self):
|
| 307 |
+
if self.config.rope_scaling is None:
|
| 308 |
+
self.rotary_emb = SkyworkLM2RotaryEmbedding(
|
| 309 |
+
self.head_dim,
|
| 310 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 311 |
+
base=self.config.rope_theta,
|
| 312 |
+
)
|
| 313 |
+
else:
|
| 314 |
+
scaling_type = self.config.rope_scaling['type']
|
| 315 |
+
scaling_factor = self.config.rope_scaling['factor']
|
| 316 |
+
if scaling_type == 'dynamic':
|
| 317 |
+
self.rotary_emb = SkyworkLM2DynamicNTKScalingRotaryEmbedding(
|
| 318 |
+
self.head_dim,
|
| 319 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 320 |
+
base=self.config.rope_theta,
|
| 321 |
+
scaling_factor=scaling_factor,
|
| 322 |
+
)
|
| 323 |
+
elif scaling_type == 'linear':
|
| 324 |
+
self.rotary_emb = SkyworkLM2LinearScalingRotaryEmbedding(
|
| 325 |
+
self.head_dim,
|
| 326 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 327 |
+
base=self.config.rope_theta,
|
| 328 |
+
scaling_factor=scaling_factor,
|
| 329 |
+
)
|
| 330 |
+
else:
|
| 331 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
| 332 |
+
return self.rotary_emb
|
| 333 |
+
|
| 334 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 335 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 336 |
+
|
| 337 |
+
def forward(
|
| 338 |
+
self,
|
| 339 |
+
hidden_states: torch.Tensor,
|
| 340 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 341 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 342 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 343 |
+
output_attentions: bool = False,
|
| 344 |
+
use_cache: bool = False,
|
| 345 |
+
**kwargs,
|
| 346 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 347 |
+
if 'padding_mask' in kwargs:
|
| 348 |
+
warnings.warn(
|
| 349 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 350 |
+
'Please make sure use `attention_mask` instead.`'
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
bsz, q_len, _ = hidden_states.size()
|
| 354 |
+
|
| 355 |
+
qkv_states = self.wqkv(hidden_states)
|
| 356 |
+
|
| 357 |
+
qkv_states = rearrange(
|
| 358 |
+
qkv_states,
|
| 359 |
+
'b q (h gs d) -> b q h gs d',
|
| 360 |
+
gs=2 + self.num_key_value_groups,
|
| 361 |
+
d=self.head_dim,
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 365 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
| 366 |
+
key_states = qkv_states[..., -2, :]
|
| 367 |
+
value_states = qkv_states[..., -1, :]
|
| 368 |
+
|
| 369 |
+
query_states = query_states.transpose(1, 2)
|
| 370 |
+
key_states = key_states.transpose(1, 2)
|
| 371 |
+
value_states = value_states.transpose(1, 2)
|
| 372 |
+
|
| 373 |
+
kv_seq_len = key_states.shape[-2]
|
| 374 |
+
if past_key_value is not None:
|
| 375 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 376 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 377 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 378 |
+
|
| 379 |
+
if past_key_value is not None:
|
| 380 |
+
# reuse k, v, self_attention
|
| 381 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 382 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 383 |
+
|
| 384 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 385 |
+
|
| 386 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 387 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 388 |
+
|
| 389 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 390 |
+
|
| 391 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 392 |
+
raise ValueError(
|
| 393 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
| 394 |
+
f' {attn_weights.size()}'
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
if attention_mask is not None:
|
| 398 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 399 |
+
raise ValueError(
|
| 400 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
| 401 |
+
)
|
| 402 |
+
attn_weights = attn_weights + attention_mask
|
| 403 |
+
|
| 404 |
+
# upcast attention to fp32
|
| 405 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 406 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 407 |
+
|
| 408 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 409 |
+
raise ValueError(
|
| 410 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
| 411 |
+
f' {attn_output.size()}'
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 415 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 416 |
+
|
| 417 |
+
attn_output = self.wo(attn_output)
|
| 418 |
+
|
| 419 |
+
if not output_attentions:
|
| 420 |
+
attn_weights = None
|
| 421 |
+
|
| 422 |
+
return attn_output, attn_weights, past_key_value
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
# Modified from transformers.model.llama.modeling_llama.SkyworkLM2FlashAttention2
|
| 426 |
+
class SkyworkLM2FlashAttention2(SkyworkLM2Attention):
|
| 427 |
+
|
| 428 |
+
def forward(
|
| 429 |
+
self,
|
| 430 |
+
hidden_states: torch.Tensor,
|
| 431 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 432 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 433 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 434 |
+
output_attentions: bool = False,
|
| 435 |
+
use_cache: bool = False,
|
| 436 |
+
**kwargs,
|
| 437 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 438 |
+
if 'padding_mask' in kwargs:
|
| 439 |
+
warnings.warn(
|
| 440 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 441 |
+
'Please make sure use `attention_mask` instead.`'
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
# overwrite attention_mask with padding_mask
|
| 445 |
+
attention_mask = kwargs.pop('padding_mask')
|
| 446 |
+
|
| 447 |
+
output_attentions = False
|
| 448 |
+
|
| 449 |
+
bsz, q_len, _ = hidden_states.size()
|
| 450 |
+
|
| 451 |
+
qkv_states = self.wqkv(hidden_states)
|
| 452 |
+
|
| 453 |
+
qkv_states = rearrange(
|
| 454 |
+
qkv_states,
|
| 455 |
+
'b q (h gs d) -> b q h gs d',
|
| 456 |
+
gs=2 + self.num_key_value_groups,
|
| 457 |
+
d=self.head_dim,
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 461 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
| 462 |
+
key_states = qkv_states[..., -2, :]
|
| 463 |
+
value_states = qkv_states[..., -1, :]
|
| 464 |
+
|
| 465 |
+
query_states = query_states.transpose(1, 2)
|
| 466 |
+
key_states = key_states.transpose(1, 2)
|
| 467 |
+
value_states = value_states.transpose(1, 2)
|
| 468 |
+
|
| 469 |
+
kv_seq_len = key_states.shape[-2]
|
| 470 |
+
if past_key_value is not None:
|
| 471 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 472 |
+
|
| 473 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 474 |
+
|
| 475 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 476 |
+
|
| 477 |
+
if past_key_value is not None:
|
| 478 |
+
# reuse k, v, self_attention
|
| 479 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 480 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 481 |
+
|
| 482 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 483 |
+
|
| 484 |
+
query_states = query_states.transpose(1, 2)
|
| 485 |
+
key_states = key_states.transpose(1, 2)
|
| 486 |
+
value_states = value_states.transpose(1, 2)
|
| 487 |
+
|
| 488 |
+
attn_output = self._flash_attention_forward(
|
| 489 |
+
query_states, key_states, value_states, attention_mask, q_len
|
| 490 |
+
)
|
| 491 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 492 |
+
attn_output = self.wo(attn_output)
|
| 493 |
+
|
| 494 |
+
if not output_attentions:
|
| 495 |
+
attn_weights = None
|
| 496 |
+
|
| 497 |
+
return attn_output, attn_weights, past_key_value
|
| 498 |
+
|
| 499 |
+
def _flash_attention_forward(
|
| 500 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 501 |
+
):
|
| 502 |
+
"""
|
| 503 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 504 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 505 |
+
|
| 506 |
+
Args:
|
| 507 |
+
query_states (`torch.Tensor`):
|
| 508 |
+
Input query states to be passed to Flash Attention API
|
| 509 |
+
key_states (`torch.Tensor`):
|
| 510 |
+
Input key states to be passed to Flash Attention API
|
| 511 |
+
value_states (`torch.Tensor`):
|
| 512 |
+
Input value states to be passed to Flash Attention API
|
| 513 |
+
attention_mask (`torch.Tensor`):
|
| 514 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 515 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 516 |
+
dropout (`int`, *optional*):
|
| 517 |
+
Attention dropout
|
| 518 |
+
softmax_scale (`float`, *optional*):
|
| 519 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 520 |
+
"""
|
| 521 |
+
# Contains at least one padding token in the sequence
|
| 522 |
+
causal = self.is_causal and query_length != 1
|
| 523 |
+
if attention_mask is not None:
|
| 524 |
+
batch_size = query_states.shape[0]
|
| 525 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
| 526 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 530 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 531 |
+
|
| 532 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 533 |
+
query_states,
|
| 534 |
+
key_states,
|
| 535 |
+
value_states,
|
| 536 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 537 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 538 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 539 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 540 |
+
dropout_p=dropout,
|
| 541 |
+
softmax_scale=softmax_scale,
|
| 542 |
+
causal=causal,
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 546 |
+
else:
|
| 547 |
+
attn_output = flash_attn_func(
|
| 548 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
return attn_output
|
| 552 |
+
|
| 553 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 554 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 555 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 556 |
+
|
| 557 |
+
key_layer = index_first_axis(
|
| 558 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 559 |
+
)
|
| 560 |
+
value_layer = index_first_axis(
|
| 561 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
if query_length == kv_seq_len:
|
| 565 |
+
query_layer = index_first_axis(
|
| 566 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 567 |
+
)
|
| 568 |
+
cu_seqlens_q = cu_seqlens_k
|
| 569 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 570 |
+
indices_q = indices_k
|
| 571 |
+
elif query_length == 1:
|
| 572 |
+
max_seqlen_in_batch_q = 1
|
| 573 |
+
cu_seqlens_q = torch.arange(
|
| 574 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 575 |
+
) # There is a memcpy here, that is very bad.
|
| 576 |
+
indices_q = cu_seqlens_q[:-1]
|
| 577 |
+
query_layer = query_layer.squeeze(1)
|
| 578 |
+
else:
|
| 579 |
+
# The -q_len: slice assumes left padding.
|
| 580 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 581 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 582 |
+
|
| 583 |
+
return (
|
| 584 |
+
query_layer,
|
| 585 |
+
key_layer,
|
| 586 |
+
value_layer,
|
| 587 |
+
indices_q.to(torch.int64),
|
| 588 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 589 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
| 594 |
+
'eager': SkyworkLM2Attention,
|
| 595 |
+
'flash_attention_2': SkyworkLM2FlashAttention2,
|
| 596 |
+
}
|
| 597 |
+
|
| 598 |
+
|
| 599 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
| 600 |
+
class SkyworkLM2DecoderLayer(nn.Module):
|
| 601 |
+
def __init__(self, config: SkyworkLM2Config):
|
| 602 |
+
super().__init__()
|
| 603 |
+
self.hidden_size = config.hidden_size
|
| 604 |
+
|
| 605 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
| 606 |
+
|
| 607 |
+
self.feed_forward = SkyworkLM2MLP(config)
|
| 608 |
+
self.attention_norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 609 |
+
self.ffn_norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 610 |
+
|
| 611 |
+
def forward(
|
| 612 |
+
self,
|
| 613 |
+
hidden_states: torch.Tensor,
|
| 614 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 615 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 616 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 617 |
+
output_attentions: Optional[bool] = False,
|
| 618 |
+
use_cache: Optional[bool] = False,
|
| 619 |
+
**kwargs,
|
| 620 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 621 |
+
"""
|
| 622 |
+
Args:
|
| 623 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 624 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 625 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 626 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 627 |
+
output_attentions (`bool`, *optional*):
|
| 628 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 629 |
+
returned tensors for more detail.
|
| 630 |
+
use_cache (`bool`, *optional*):
|
| 631 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 632 |
+
(see `past_key_values`).
|
| 633 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 634 |
+
"""
|
| 635 |
+
if 'padding_mask' in kwargs:
|
| 636 |
+
warnings.warn(
|
| 637 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 638 |
+
'Please make sure use `attention_mask` instead.`'
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
residual = hidden_states
|
| 642 |
+
|
| 643 |
+
hidden_states = self.attention_norm(hidden_states)
|
| 644 |
+
|
| 645 |
+
# Self Attention
|
| 646 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
| 647 |
+
hidden_states=hidden_states,
|
| 648 |
+
attention_mask=attention_mask,
|
| 649 |
+
position_ids=position_ids,
|
| 650 |
+
past_key_value=past_key_value,
|
| 651 |
+
output_attentions=output_attentions,
|
| 652 |
+
use_cache=use_cache,
|
| 653 |
+
**kwargs,
|
| 654 |
+
)
|
| 655 |
+
hidden_states = residual + hidden_states
|
| 656 |
+
|
| 657 |
+
# Fully Connected
|
| 658 |
+
residual = hidden_states
|
| 659 |
+
hidden_states = self.ffn_norm(hidden_states)
|
| 660 |
+
hidden_states = self.feed_forward(hidden_states)
|
| 661 |
+
hidden_states = residual + hidden_states
|
| 662 |
+
|
| 663 |
+
outputs = (hidden_states,)
|
| 664 |
+
|
| 665 |
+
if output_attentions:
|
| 666 |
+
outputs += (self_attn_weights,)
|
| 667 |
+
|
| 668 |
+
if use_cache:
|
| 669 |
+
outputs += (present_key_value,)
|
| 670 |
+
|
| 671 |
+
return outputs
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
SkyworkLM2_START_DOCSTRING = r"""
|
| 675 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 676 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 677 |
+
etc.)
|
| 678 |
+
|
| 679 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 680 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 681 |
+
and behavior.
|
| 682 |
+
|
| 683 |
+
Parameters:
|
| 684 |
+
config ([`SkyworkLM2Config`]):
|
| 685 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 686 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 687 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 688 |
+
"""
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->SkyworkLM2
|
| 692 |
+
@add_start_docstrings(
|
| 693 |
+
'The bare SkyworkLM2 Model outputting raw hidden-states without any specific head on top.',
|
| 694 |
+
SkyworkLM2_START_DOCSTRING,
|
| 695 |
+
)
|
| 696 |
+
class SkyworkLM2PreTrainedModel(PreTrainedModel):
|
| 697 |
+
config_class = SkyworkLM2Config
|
| 698 |
+
base_model_prefix = 'model'
|
| 699 |
+
supports_gradient_checkpointing = True
|
| 700 |
+
_no_split_modules = ['SkyworkLM2DecoderLayer']
|
| 701 |
+
_skip_keys_device_placement = 'past_key_values'
|
| 702 |
+
_supports_flash_attn_2 = True
|
| 703 |
+
|
| 704 |
+
def _init_weights(self, module):
|
| 705 |
+
std = self.config.initializer_range
|
| 706 |
+
if isinstance(module, nn.Linear):
|
| 707 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 708 |
+
if module.bias is not None:
|
| 709 |
+
module.bias.data.zero_()
|
| 710 |
+
elif isinstance(module, nn.Embedding):
|
| 711 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 712 |
+
if module.padding_idx is not None:
|
| 713 |
+
module.weight.data[module.padding_idx].zero_()
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
SkyworkLM2_INPUTS_DOCSTRING = r"""
|
| 717 |
+
Args:
|
| 718 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 719 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 720 |
+
it.
|
| 721 |
+
|
| 722 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 723 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 724 |
+
|
| 725 |
+
[What are input IDs?](../glossary#input-ids)
|
| 726 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 727 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 728 |
+
|
| 729 |
+
- 1 for tokens that are **not masked**,
|
| 730 |
+
- 0 for tokens that are **masked**.
|
| 731 |
+
|
| 732 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 733 |
+
|
| 734 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 735 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 736 |
+
|
| 737 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 738 |
+
`past_key_values`).
|
| 739 |
+
|
| 740 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 741 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 742 |
+
information on the default strategy.
|
| 743 |
+
|
| 744 |
+
- 1 indicates the head is **not masked**,
|
| 745 |
+
- 0 indicates the head is **masked**.
|
| 746 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 747 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 748 |
+
config.n_positions - 1]`.
|
| 749 |
+
|
| 750 |
+
[What are position IDs?](../glossary#position-ids)
|
| 751 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
| 752 |
+
when `config.use_cache=True`):
|
| 753 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 754 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 755 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
| 756 |
+
|
| 757 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 758 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 759 |
+
|
| 760 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 761 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 762 |
+
of shape `(batch_size, sequence_length)`.
|
| 763 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 764 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 765 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 766 |
+
model's skywork embedding lookup matrix.
|
| 767 |
+
use_cache (`bool`, *optional*):
|
| 768 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 769 |
+
`past_key_values`).
|
| 770 |
+
output_attentions (`bool`, *optional*):
|
| 771 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 772 |
+
tensors for more detail.
|
| 773 |
+
output_hidden_states (`bool`, *optional*):
|
| 774 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 775 |
+
more detail.
|
| 776 |
+
return_dict (`bool`, *optional*):
|
| 777 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 778 |
+
"""
|
| 779 |
+
|
| 780 |
+
|
| 781 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
| 782 |
+
@add_start_docstrings(
|
| 783 |
+
'The bare SkyworkLM2 Model outputting raw hidden-states without any specific head on top.',
|
| 784 |
+
SkyworkLM2_START_DOCSTRING,
|
| 785 |
+
)
|
| 786 |
+
class SkyworkLM2Model(SkyworkLM2PreTrainedModel):
|
| 787 |
+
"""
|
| 788 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SkyworkLM2DecoderLayer`]
|
| 789 |
+
|
| 790 |
+
Args:
|
| 791 |
+
config: SkyworkLM2Config
|
| 792 |
+
"""
|
| 793 |
+
|
| 794 |
+
_auto_class = 'AutoModel'
|
| 795 |
+
|
| 796 |
+
def __init__(self, config: SkyworkLM2Config):
|
| 797 |
+
super().__init__(config)
|
| 798 |
+
self.padding_idx = config.pad_token_id
|
| 799 |
+
self.vocab_size = config.vocab_size
|
| 800 |
+
self.config = config
|
| 801 |
+
if not has_flash_attn:
|
| 802 |
+
self.config.attn_implementation = 'eager'
|
| 803 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
| 804 |
+
|
| 805 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 806 |
+
|
| 807 |
+
self.layers = nn.ModuleList([SkyworkLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 808 |
+
self.norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 809 |
+
|
| 810 |
+
self.gradient_checkpointing = False
|
| 811 |
+
# Initialize weights and apply final processing
|
| 812 |
+
self.post_init()
|
| 813 |
+
|
| 814 |
+
def get_input_embeddings(self):
|
| 815 |
+
return self.tok_embeddings
|
| 816 |
+
|
| 817 |
+
def set_input_embeddings(self, value):
|
| 818 |
+
self.tok_embeddings = value
|
| 819 |
+
|
| 820 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 821 |
+
# create causal mask
|
| 822 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 823 |
+
combined_attention_mask = None
|
| 824 |
+
if input_shape[-1] > 1:
|
| 825 |
+
combined_attention_mask = _make_causal_mask(
|
| 826 |
+
input_shape,
|
| 827 |
+
inputs_embeds.dtype,
|
| 828 |
+
device=inputs_embeds.device,
|
| 829 |
+
past_key_values_length=past_key_values_length,
|
| 830 |
+
)
|
| 831 |
+
|
| 832 |
+
if attention_mask is not None:
|
| 833 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 834 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 835 |
+
inputs_embeds.device
|
| 836 |
+
)
|
| 837 |
+
combined_attention_mask = (
|
| 838 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 839 |
+
)
|
| 840 |
+
|
| 841 |
+
return combined_attention_mask
|
| 842 |
+
|
| 843 |
+
@add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
|
| 844 |
+
def forward(
|
| 845 |
+
self,
|
| 846 |
+
input_ids: torch.LongTensor = None,
|
| 847 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 848 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 849 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 850 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 851 |
+
use_cache: Optional[bool] = None,
|
| 852 |
+
output_attentions: Optional[bool] = None,
|
| 853 |
+
output_hidden_states: Optional[bool] = None,
|
| 854 |
+
return_dict: Optional[bool] = None,
|
| 855 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 856 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 857 |
+
output_hidden_states = (
|
| 858 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 859 |
+
)
|
| 860 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 861 |
+
|
| 862 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 863 |
+
|
| 864 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
| 865 |
+
_import_flash_attn()
|
| 866 |
+
|
| 867 |
+
# retrieve input_ids and inputs_embeds
|
| 868 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 869 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
| 870 |
+
elif input_ids is not None:
|
| 871 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 872 |
+
elif inputs_embeds is not None:
|
| 873 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 874 |
+
else:
|
| 875 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
| 876 |
+
|
| 877 |
+
seq_length_with_past = seq_length
|
| 878 |
+
past_key_values_length = 0
|
| 879 |
+
if past_key_values is not None:
|
| 880 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 881 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 882 |
+
|
| 883 |
+
if position_ids is None:
|
| 884 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 885 |
+
position_ids = torch.arange(
|
| 886 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 887 |
+
)
|
| 888 |
+
position_ids = position_ids.unsqueeze(0)
|
| 889 |
+
|
| 890 |
+
if inputs_embeds is None:
|
| 891 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
| 892 |
+
|
| 893 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
| 894 |
+
# 2d mask is passed through the layers
|
| 895 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 896 |
+
else:
|
| 897 |
+
if attention_mask is None:
|
| 898 |
+
attention_mask = torch.ones(
|
| 899 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 900 |
+
)
|
| 901 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 902 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 903 |
+
)
|
| 904 |
+
|
| 905 |
+
# embed positions
|
| 906 |
+
hidden_states = inputs_embeds
|
| 907 |
+
|
| 908 |
+
if self.gradient_checkpointing and self.training:
|
| 909 |
+
if use_cache:
|
| 910 |
+
logger.warning_once(
|
| 911 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
| 912 |
+
)
|
| 913 |
+
use_cache = False
|
| 914 |
+
|
| 915 |
+
# decoder layers
|
| 916 |
+
all_hidden_states = () if output_hidden_states else None
|
| 917 |
+
all_self_attns = () if output_attentions else None
|
| 918 |
+
next_decoder_cache = () if use_cache else None
|
| 919 |
+
|
| 920 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 921 |
+
if output_hidden_states:
|
| 922 |
+
all_hidden_states += (hidden_states,)
|
| 923 |
+
|
| 924 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 925 |
+
|
| 926 |
+
if self.gradient_checkpointing and self.training:
|
| 927 |
+
|
| 928 |
+
def create_custom_forward(module):
|
| 929 |
+
def custom_forward(*inputs):
|
| 930 |
+
# None for past_key_value
|
| 931 |
+
return module(*inputs, output_attentions, None)
|
| 932 |
+
|
| 933 |
+
return custom_forward
|
| 934 |
+
|
| 935 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 936 |
+
create_custom_forward(decoder_layer),
|
| 937 |
+
hidden_states,
|
| 938 |
+
attention_mask,
|
| 939 |
+
position_ids,
|
| 940 |
+
None,
|
| 941 |
+
)
|
| 942 |
+
else:
|
| 943 |
+
layer_outputs = decoder_layer(
|
| 944 |
+
hidden_states,
|
| 945 |
+
attention_mask=attention_mask,
|
| 946 |
+
position_ids=position_ids,
|
| 947 |
+
past_key_value=past_key_value,
|
| 948 |
+
output_attentions=output_attentions,
|
| 949 |
+
use_cache=use_cache,
|
| 950 |
+
)
|
| 951 |
+
|
| 952 |
+
hidden_states = layer_outputs[0]
|
| 953 |
+
|
| 954 |
+
if use_cache:
|
| 955 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 956 |
+
|
| 957 |
+
if output_attentions:
|
| 958 |
+
all_self_attns += (layer_outputs[1],)
|
| 959 |
+
|
| 960 |
+
hidden_states = self.norm(hidden_states)
|
| 961 |
+
|
| 962 |
+
# add hidden states from the last decoder layer
|
| 963 |
+
if output_hidden_states:
|
| 964 |
+
all_hidden_states += (hidden_states,)
|
| 965 |
+
|
| 966 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 967 |
+
if not return_dict:
|
| 968 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 969 |
+
return BaseModelOutputWithPast(
|
| 970 |
+
last_hidden_state=hidden_states,
|
| 971 |
+
past_key_values=next_cache,
|
| 972 |
+
hidden_states=all_hidden_states,
|
| 973 |
+
attentions=all_self_attns,
|
| 974 |
+
)
|
| 975 |
+
|
| 976 |
+
|
| 977 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
| 978 |
+
class SkyworkLM2ForCausalLM(SkyworkLM2PreTrainedModel):
|
| 979 |
+
_auto_class = 'AutoModelForCausalLM'
|
| 980 |
+
|
| 981 |
+
_tied_weights_keys = ['output.weight']
|
| 982 |
+
|
| 983 |
+
def __init__(self, config):
|
| 984 |
+
super().__init__(config)
|
| 985 |
+
self.model = SkyworkLM2Model(config)
|
| 986 |
+
self.vocab_size = config.vocab_size
|
| 987 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 988 |
+
|
| 989 |
+
# Initialize weights and apply final processing
|
| 990 |
+
self.post_init()
|
| 991 |
+
|
| 992 |
+
def get_input_embeddings(self):
|
| 993 |
+
return self.model.tok_embeddings
|
| 994 |
+
|
| 995 |
+
def set_input_embeddings(self, value):
|
| 996 |
+
self.model.tok_embeddings = value
|
| 997 |
+
|
| 998 |
+
def get_output_embeddings(self):
|
| 999 |
+
return self.output
|
| 1000 |
+
|
| 1001 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1002 |
+
self.output = new_embeddings
|
| 1003 |
+
|
| 1004 |
+
def set_decoder(self, decoder):
|
| 1005 |
+
self.model = decoder
|
| 1006 |
+
|
| 1007 |
+
def get_decoder(self):
|
| 1008 |
+
return self.model
|
| 1009 |
+
|
| 1010 |
+
@add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
|
| 1011 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1012 |
+
def forward(
|
| 1013 |
+
self,
|
| 1014 |
+
input_ids: torch.LongTensor = None,
|
| 1015 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1016 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1017 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1018 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1019 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1020 |
+
use_cache: Optional[bool] = None,
|
| 1021 |
+
output_attentions: Optional[bool] = None,
|
| 1022 |
+
output_hidden_states: Optional[bool] = None,
|
| 1023 |
+
return_dict: Optional[bool] = None,
|
| 1024 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1025 |
+
r"""
|
| 1026 |
+
Args:
|
| 1027 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1028 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1029 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1030 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1031 |
+
|
| 1032 |
+
Returns:
|
| 1033 |
+
|
| 1034 |
+
Example:
|
| 1035 |
+
|
| 1036 |
+
```python
|
| 1037 |
+
>>> from transformers import AutoTokenizer, SkyworkLM2ForCausalLM
|
| 1038 |
+
|
| 1039 |
+
>>> model = SkyworkLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1040 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1041 |
+
|
| 1042 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1043 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1044 |
+
|
| 1045 |
+
>>> # Generate
|
| 1046 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1047 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1048 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1049 |
+
```"""
|
| 1050 |
+
|
| 1051 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1052 |
+
output_hidden_states = (
|
| 1053 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1054 |
+
)
|
| 1055 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1056 |
+
|
| 1057 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1058 |
+
outputs = self.model(
|
| 1059 |
+
input_ids=input_ids,
|
| 1060 |
+
attention_mask=attention_mask,
|
| 1061 |
+
position_ids=position_ids,
|
| 1062 |
+
past_key_values=past_key_values,
|
| 1063 |
+
inputs_embeds=inputs_embeds,
|
| 1064 |
+
use_cache=use_cache,
|
| 1065 |
+
output_attentions=output_attentions,
|
| 1066 |
+
output_hidden_states=output_hidden_states,
|
| 1067 |
+
return_dict=return_dict,
|
| 1068 |
+
)
|
| 1069 |
+
|
| 1070 |
+
hidden_states = outputs[0]
|
| 1071 |
+
logits = self.output(hidden_states)
|
| 1072 |
+
logits = logits.float()
|
| 1073 |
+
|
| 1074 |
+
loss = None
|
| 1075 |
+
if labels is not None:
|
| 1076 |
+
# Shift so that tokens < n predict n
|
| 1077 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1078 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1079 |
+
# Flatten the tokens
|
| 1080 |
+
loss_fct = CrossEntropyLoss()
|
| 1081 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1082 |
+
shift_labels = shift_labels.view(-1)
|
| 1083 |
+
# Enable model parallelism
|
| 1084 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1085 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1086 |
+
|
| 1087 |
+
if not return_dict:
|
| 1088 |
+
output = (logits,) + outputs[1:]
|
| 1089 |
+
return (loss,) + output if loss is not None else output
|
| 1090 |
+
|
| 1091 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1092 |
+
output = CausalLMOutputWithPast(
|
| 1093 |
+
loss=loss,
|
| 1094 |
+
logits=logits,
|
| 1095 |
+
past_key_values=outputs.past_key_values,
|
| 1096 |
+
hidden_states=outputs.hidden_states,
|
| 1097 |
+
attentions=outputs.attentions,
|
| 1098 |
+
)
|
| 1099 |
+
output['logits'] = output['logits'].to(device)
|
| 1100 |
+
return output
|
| 1101 |
+
|
| 1102 |
+
def prepare_inputs_for_generation(
|
| 1103 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 1104 |
+
):
|
| 1105 |
+
if past_key_values is not None:
|
| 1106 |
+
past_length = past_key_values[0][0].shape[2]
|
| 1107 |
+
|
| 1108 |
+
# Some generation methods already pass only the last input ID
|
| 1109 |
+
if input_ids.shape[1] > past_length:
|
| 1110 |
+
remove_prefix_length = past_length
|
| 1111 |
+
else:
|
| 1112 |
+
# Default to old behavior: keep only final ID
|
| 1113 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 1114 |
+
|
| 1115 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 1116 |
+
|
| 1117 |
+
position_ids = kwargs.get('position_ids', None)
|
| 1118 |
+
if attention_mask is not None and position_ids is None:
|
| 1119 |
+
# create position_ids on the fly for batch generation
|
| 1120 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1121 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1122 |
+
if past_key_values:
|
| 1123 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1124 |
+
|
| 1125 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1126 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1127 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 1128 |
+
else:
|
| 1129 |
+
model_inputs = {'input_ids': input_ids}
|
| 1130 |
+
|
| 1131 |
+
model_inputs.update(
|
| 1132 |
+
{
|
| 1133 |
+
'position_ids': position_ids,
|
| 1134 |
+
'past_key_values': past_key_values,
|
| 1135 |
+
'use_cache': kwargs.get('use_cache'),
|
| 1136 |
+
'attention_mask': attention_mask,
|
| 1137 |
+
}
|
| 1138 |
+
)
|
| 1139 |
+
return model_inputs
|
| 1140 |
+
|
| 1141 |
+
@staticmethod
|
| 1142 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1143 |
+
reordered_past = ()
|
| 1144 |
+
for layer_past in past_key_values:
|
| 1145 |
+
reordered_past += (
|
| 1146 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1147 |
+
)
|
| 1148 |
+
return reordered_past
|
| 1149 |
+
|
| 1150 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''): #TODO
|
| 1151 |
+
if tokenizer.add_bos_token:
|
| 1152 |
+
prompt = ''
|
| 1153 |
+
else:
|
| 1154 |
+
prompt = tokenizer.bos_token
|
| 1155 |
+
if meta_instruction:
|
| 1156 |
+
prompt += f"""<|begin▁of▁sentence|>system\n{meta_instruction}<|end▁of▁sentence|>\n"""
|
| 1157 |
+
for record in history:
|
| 1158 |
+
prompt += f"""<|begin▁of▁sentence��>user\n{record[0]}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n{record[1]}<|end▁of▁sentence|>\n"""
|
| 1159 |
+
prompt += f"""<|begin▁of▁sentence|>user\n{query}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n"""
|
| 1160 |
+
return tokenizer([prompt], return_tensors='pt')
|
| 1161 |
+
|
| 1162 |
+
@torch.no_grad()
|
| 1163 |
+
def chat(
|
| 1164 |
+
self,
|
| 1165 |
+
tokenizer,
|
| 1166 |
+
query: str,
|
| 1167 |
+
history: List[Tuple[str, str]] = [],
|
| 1168 |
+
streamer: Optional[BaseStreamer] = None,
|
| 1169 |
+
max_new_tokens: int = 1024,
|
| 1170 |
+
do_sample: bool = True,
|
| 1171 |
+
temperature: float = 0.8,
|
| 1172 |
+
top_p: float = 0.8,
|
| 1173 |
+
meta_instruction: str = '',
|
| 1174 |
+
**kwargs,
|
| 1175 |
+
):
|
| 1176 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
| 1177 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
| 1178 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
| 1179 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|end▁of▁sentence|>'])[0]]
|
| 1180 |
+
outputs = self.generate(
|
| 1181 |
+
**inputs,
|
| 1182 |
+
streamer=streamer,
|
| 1183 |
+
max_new_tokens=max_new_tokens,
|
| 1184 |
+
do_sample=do_sample,
|
| 1185 |
+
temperature=temperature,
|
| 1186 |
+
top_p=top_p,
|
| 1187 |
+
eos_token_id=eos_token_id,
|
| 1188 |
+
**kwargs,
|
| 1189 |
+
)
|
| 1190 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
|
| 1191 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
| 1192 |
+
response = response.split('<|end▁of▁sentence|>')[0]
|
| 1193 |
+
history = history + [(query, response)]
|
| 1194 |
+
return response, history
|
| 1195 |
+
|
| 1196 |
+
@torch.no_grad()
|
| 1197 |
+
def stream_chat(
|
| 1198 |
+
self,
|
| 1199 |
+
tokenizer,
|
| 1200 |
+
query: str,
|
| 1201 |
+
history: List[Tuple[str, str]] = [],
|
| 1202 |
+
max_new_tokens: int = 1024,
|
| 1203 |
+
do_sample: bool = True,
|
| 1204 |
+
temperature: float = 0.8,
|
| 1205 |
+
top_p: float = 0.8,
|
| 1206 |
+
**kwargs,
|
| 1207 |
+
):
|
| 1208 |
+
"""
|
| 1209 |
+
Return a generator in format: (response, history)
|
| 1210 |
+
Eg.
|
| 1211 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
| 1212 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
| 1213 |
+
"""
|
| 1214 |
+
if BaseStreamer is None:
|
| 1215 |
+
raise ModuleNotFoundError(
|
| 1216 |
+
'The version of `transformers` is too low. Please make sure '
|
| 1217 |
+
'that you have installed `transformers>=4.28.0`.'
|
| 1218 |
+
)
|
| 1219 |
+
|
| 1220 |
+
response_queue = queue.Queue(maxsize=20)
|
| 1221 |
+
|
| 1222 |
+
class ChatStreamer(BaseStreamer):
|
| 1223 |
+
def __init__(self, tokenizer) -> None:
|
| 1224 |
+
super().__init__()
|
| 1225 |
+
self.tokenizer = tokenizer
|
| 1226 |
+
self.queue = response_queue
|
| 1227 |
+
self.query = query
|
| 1228 |
+
self.history = history
|
| 1229 |
+
self.response = ''
|
| 1230 |
+
self.cache = []
|
| 1231 |
+
self.received_inputs = False
|
| 1232 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
| 1233 |
+
|
| 1234 |
+
def put(self, value):
|
| 1235 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
| 1236 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
| 1237 |
+
elif len(value.shape) > 1:
|
| 1238 |
+
value = value[0]
|
| 1239 |
+
|
| 1240 |
+
if not self.received_inputs:
|
| 1241 |
+
# The first received value is input_ids, ignore here
|
| 1242 |
+
self.received_inputs = True
|
| 1243 |
+
return
|
| 1244 |
+
|
| 1245 |
+
self.cache.extend(value.tolist())
|
| 1246 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
| 1247 |
+
if token.strip() != '<|end▁of▁sentence|>':
|
| 1248 |
+
self.response = self.response + token
|
| 1249 |
+
history = self.history + [(self.query, self.response)]
|
| 1250 |
+
self.queue.put((self.response, history))
|
| 1251 |
+
self.cache = []
|
| 1252 |
+
else:
|
| 1253 |
+
self.end()
|
| 1254 |
+
|
| 1255 |
+
def end(self):
|
| 1256 |
+
self.queue.put(None)
|
| 1257 |
+
|
| 1258 |
+
def stream_producer():
|
| 1259 |
+
return self.chat(
|
| 1260 |
+
tokenizer=tokenizer,
|
| 1261 |
+
query=query,
|
| 1262 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
| 1263 |
+
history=history,
|
| 1264 |
+
max_new_tokens=max_new_tokens,
|
| 1265 |
+
do_sample=do_sample,
|
| 1266 |
+
temperature=temperature,
|
| 1267 |
+
top_p=top_p,
|
| 1268 |
+
**kwargs,
|
| 1269 |
+
)
|
| 1270 |
+
|
| 1271 |
+
def consumer():
|
| 1272 |
+
producer = threading.Thread(target=stream_producer)
|
| 1273 |
+
producer.start()
|
| 1274 |
+
while True:
|
| 1275 |
+
res = response_queue.get()
|
| 1276 |
+
if res is None:
|
| 1277 |
+
return
|
| 1278 |
+
yield res
|
| 1279 |
+
|
| 1280 |
+
return consumer()
|
| 1281 |
+
|
| 1282 |
+
|
| 1283 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->SkyworkLM2
|
| 1284 |
+
@add_start_docstrings(
|
| 1285 |
+
"""
|
| 1286 |
+
The SkyworkLM2 Model transformer with a sequence classification head on top (linear layer).
|
| 1287 |
+
|
| 1288 |
+
[`SkyworkLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
| 1289 |
+
as other causal models (e.g. GPT-2) do.
|
| 1290 |
+
|
| 1291 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1292 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1293 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1294 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1295 |
+
each row of the batch).
|
| 1296 |
+
""",
|
| 1297 |
+
SkyworkLM2_START_DOCSTRING,
|
| 1298 |
+
)
|
| 1299 |
+
class SkyworkLM2ForSequenceClassification(SkyworkLM2PreTrainedModel):
|
| 1300 |
+
def __init__(self, config):
|
| 1301 |
+
super().__init__(config)
|
| 1302 |
+
self.num_labels = config.num_labels
|
| 1303 |
+
self.model = SkyworkLM2Model(config)
|
| 1304 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1305 |
+
|
| 1306 |
+
# Initialize weights and apply final processing
|
| 1307 |
+
self.post_init()
|
| 1308 |
+
|
| 1309 |
+
def get_input_embeddings(self):
|
| 1310 |
+
return self.model.tok_embeddings
|
| 1311 |
+
|
| 1312 |
+
def set_input_embeddings(self, value):
|
| 1313 |
+
self.model.tok_embeddings = value
|
| 1314 |
+
|
| 1315 |
+
@add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
|
| 1316 |
+
def forward(
|
| 1317 |
+
self,
|
| 1318 |
+
input_ids: torch.LongTensor = None,
|
| 1319 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1320 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1321 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1322 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1323 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1324 |
+
use_cache: Optional[bool] = None,
|
| 1325 |
+
output_attentions: Optional[bool] = None,
|
| 1326 |
+
output_hidden_states: Optional[bool] = None,
|
| 1327 |
+
return_dict: Optional[bool] = None,
|
| 1328 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1329 |
+
r"""
|
| 1330 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1331 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1332 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1333 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1334 |
+
"""
|
| 1335 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1336 |
+
|
| 1337 |
+
transformer_outputs = self.model(
|
| 1338 |
+
input_ids,
|
| 1339 |
+
attention_mask=attention_mask,
|
| 1340 |
+
position_ids=position_ids,
|
| 1341 |
+
past_key_values=past_key_values,
|
| 1342 |
+
inputs_embeds=inputs_embeds,
|
| 1343 |
+
use_cache=use_cache,
|
| 1344 |
+
output_attentions=output_attentions,
|
| 1345 |
+
output_hidden_states=output_hidden_states,
|
| 1346 |
+
return_dict=return_dict,
|
| 1347 |
+
)
|
| 1348 |
+
hidden_states = transformer_outputs[0]
|
| 1349 |
+
logits = self.score(hidden_states)
|
| 1350 |
+
|
| 1351 |
+
if input_ids is not None:
|
| 1352 |
+
batch_size = input_ids.shape[0]
|
| 1353 |
+
else:
|
| 1354 |
+
batch_size = inputs_embeds.shape[0]
|
| 1355 |
+
|
| 1356 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1357 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
| 1358 |
+
if self.config.pad_token_id is None:
|
| 1359 |
+
sequence_lengths = -1
|
| 1360 |
+
else:
|
| 1361 |
+
if input_ids is not None:
|
| 1362 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
| 1363 |
+
logits.device
|
| 1364 |
+
)
|
| 1365 |
+
else:
|
| 1366 |
+
sequence_lengths = -1
|
| 1367 |
+
|
| 1368 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1369 |
+
|
| 1370 |
+
loss = None
|
| 1371 |
+
if labels is not None:
|
| 1372 |
+
labels = labels.to(logits.device)
|
| 1373 |
+
if self.config.problem_type is None:
|
| 1374 |
+
if self.num_labels == 1:
|
| 1375 |
+
self.config.problem_type = 'regression'
|
| 1376 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1377 |
+
self.config.problem_type = 'single_label_classification'
|
| 1378 |
+
else:
|
| 1379 |
+
self.config.problem_type = 'multi_label_classification'
|
| 1380 |
+
|
| 1381 |
+
if self.config.problem_type == 'regression':
|
| 1382 |
+
loss_fct = MSELoss()
|
| 1383 |
+
if self.num_labels == 1:
|
| 1384 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1385 |
+
else:
|
| 1386 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1387 |
+
elif self.config.problem_type == 'single_label_classification':
|
| 1388 |
+
loss_fct = CrossEntropyLoss()
|
| 1389 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1390 |
+
elif self.config.problem_type == 'multi_label_classification':
|
| 1391 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1392 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1393 |
+
if not return_dict:
|
| 1394 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1395 |
+
return ((loss,) + output) if loss is not None else output
|
| 1396 |
+
|
| 1397 |
+
return SequenceClassifierOutputWithPast(
|
| 1398 |
+
loss=loss,
|
| 1399 |
+
logits=pooled_logits,
|
| 1400 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1401 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1402 |
+
attentions=transformer_outputs.attentions,
|
| 1403 |
+
)
|
modeling_skywork_vit.py
ADDED
|
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torch.utils.checkpoint
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from timm.models.layers import DropPath
|
| 8 |
+
from torch import nn
|
| 9 |
+
from transformers.activations import ACT2FN
|
| 10 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
| 11 |
+
BaseModelOutputWithPooling)
|
| 12 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 13 |
+
from transformers.utils import logging
|
| 14 |
+
|
| 15 |
+
from .configuration_skywork_vit import SkyworkVisionConfig
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
| 19 |
+
from flash_attn.flash_attn_interface import \
|
| 20 |
+
flash_attn_varlen_qkvpacked_func
|
| 21 |
+
has_flash_attn = True
|
| 22 |
+
except:
|
| 23 |
+
print('FlashAttention2 is not installed.')
|
| 24 |
+
has_flash_attn = False
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class FlashAttention(nn.Module):
|
| 30 |
+
"""Implement the scaled dot product attention with softmax.
|
| 31 |
+
Arguments
|
| 32 |
+
---------
|
| 33 |
+
softmax_scale: The temperature to use for the softmax attention.
|
| 34 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
| 35 |
+
runtime)
|
| 36 |
+
attention_dropout: The dropout rate to apply to the attention
|
| 37 |
+
(default: 0.0)
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.softmax_scale = softmax_scale
|
| 43 |
+
self.dropout_p = attention_dropout
|
| 44 |
+
|
| 45 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
| 46 |
+
max_s=None, need_weights=False):
|
| 47 |
+
"""Implements the multihead softmax attention.
|
| 48 |
+
Arguments
|
| 49 |
+
---------
|
| 50 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
| 51 |
+
if unpadded: (nnz, 3, h, d)
|
| 52 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
| 53 |
+
"""
|
| 54 |
+
assert not need_weights
|
| 55 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
| 56 |
+
assert qkv.is_cuda
|
| 57 |
+
|
| 58 |
+
if cu_seqlens is None:
|
| 59 |
+
batch_size = qkv.shape[0]
|
| 60 |
+
seqlen = qkv.shape[1]
|
| 61 |
+
if key_padding_mask is None:
|
| 62 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
| 63 |
+
max_s = seqlen
|
| 64 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
| 65 |
+
device=qkv.device)
|
| 66 |
+
output = flash_attn_varlen_qkvpacked_func(
|
| 67 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 68 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 69 |
+
)
|
| 70 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
| 71 |
+
else:
|
| 72 |
+
nheads = qkv.shape[-2]
|
| 73 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
| 74 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
| 75 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
| 76 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
| 77 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 78 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 79 |
+
)
|
| 80 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
| 81 |
+
indices, batch_size, seqlen),
|
| 82 |
+
'b s (h d) -> b s h d', h=nheads)
|
| 83 |
+
else:
|
| 84 |
+
assert max_s is not None
|
| 85 |
+
output = flash_attn_varlen_qkvpacked_func(
|
| 86 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 87 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return output, None
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class SkyworkRMSNorm(nn.Module):
|
| 94 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 95 |
+
super().__init__()
|
| 96 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 97 |
+
self.variance_epsilon = eps
|
| 98 |
+
|
| 99 |
+
def forward(self, hidden_states):
|
| 100 |
+
input_dtype = hidden_states.dtype
|
| 101 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 102 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 103 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 104 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
from apex.normalization import FusedRMSNorm
|
| 109 |
+
|
| 110 |
+
SkyworkRMSNorm = FusedRMSNorm # noqa
|
| 111 |
+
|
| 112 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead ofSkyworkRMSNorm')
|
| 113 |
+
except ImportError:
|
| 114 |
+
# using the normal SkyworkRMSNorm
|
| 115 |
+
pass
|
| 116 |
+
except Exception:
|
| 117 |
+
logger.warning('discovered apex but it failed to load, falling back to SkyworkRMSNorm')
|
| 118 |
+
pass
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
NORM2FN = {
|
| 122 |
+
'rms_norm': SkyworkRMSNorm,
|
| 123 |
+
'layer_norm': nn.LayerNorm,
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class SkyworkVisionEmbeddings(nn.Module):
|
| 128 |
+
def __init__(self, config: SkyworkVisionConfig):
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.config = config
|
| 131 |
+
self.embed_dim = config.hidden_size
|
| 132 |
+
self.image_size = config.image_size
|
| 133 |
+
self.patch_size = config.patch_size
|
| 134 |
+
|
| 135 |
+
self.class_embedding = nn.Parameter(
|
| 136 |
+
torch.randn(1, 1, self.embed_dim),
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
self.patch_embedding = nn.Conv2d(
|
| 140 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 144 |
+
self.num_positions = self.num_patches + 1
|
| 145 |
+
|
| 146 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
| 147 |
+
|
| 148 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
| 149 |
+
target_dtype = pos_embed.dtype
|
| 150 |
+
pos_embed = pos_embed.float().reshape(
|
| 151 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
| 152 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
| 153 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
| 154 |
+
return pos_embed
|
| 155 |
+
|
| 156 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 157 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 158 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
| 159 |
+
batch_size, _, height, width = patch_embeds.shape
|
| 160 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 161 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
| 162 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 163 |
+
position_embedding = torch.cat([
|
| 164 |
+
self.position_embedding[:, :1, :],
|
| 165 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
| 166 |
+
], dim=1)
|
| 167 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
| 168 |
+
return embeddings
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class SkyworkAttention(nn.Module):
|
| 172 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 173 |
+
|
| 174 |
+
def __init__(self, config: SkyworkVisionConfig):
|
| 175 |
+
super().__init__()
|
| 176 |
+
self.config = config
|
| 177 |
+
self.embed_dim = config.hidden_size
|
| 178 |
+
self.num_heads = config.num_attention_heads
|
| 179 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
| 180 |
+
if config.use_flash_attn and not has_flash_attn:
|
| 181 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
| 182 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 183 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 184 |
+
raise ValueError(
|
| 185 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
| 186 |
+
f' {self.num_heads}).'
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.scale = self.head_dim ** -0.5
|
| 190 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
| 191 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
| 192 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 193 |
+
|
| 194 |
+
self.qk_normalization = config.qk_normalization
|
| 195 |
+
|
| 196 |
+
if self.qk_normalization:
|
| 197 |
+
self.q_norm = SkyworkRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 198 |
+
self.k_norm = SkyworkRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 199 |
+
|
| 200 |
+
if self.use_flash_attn:
|
| 201 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
| 202 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 203 |
+
|
| 204 |
+
def _naive_attn(self, x):
|
| 205 |
+
B, N, C = x.shape
|
| 206 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 207 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 208 |
+
|
| 209 |
+
if self.qk_normalization:
|
| 210 |
+
B_, H_, N_, D_ = q.shape
|
| 211 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 212 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 213 |
+
|
| 214 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
| 215 |
+
attn = attn.softmax(dim=-1)
|
| 216 |
+
attn = self.attn_drop(attn)
|
| 217 |
+
|
| 218 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 219 |
+
x = self.proj(x)
|
| 220 |
+
x = self.proj_drop(x)
|
| 221 |
+
return x
|
| 222 |
+
|
| 223 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
| 224 |
+
qkv = self.qkv(x)
|
| 225 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
| 226 |
+
|
| 227 |
+
if self.qk_normalization:
|
| 228 |
+
q, k, v = qkv.unbind(2)
|
| 229 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
| 230 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
| 231 |
+
qkv = torch.stack([q, k, v], dim=2)
|
| 232 |
+
|
| 233 |
+
context, _ = self.inner_attn(
|
| 234 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
| 235 |
+
)
|
| 236 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
| 237 |
+
outs = self.proj_drop(outs)
|
| 238 |
+
return outs
|
| 239 |
+
|
| 240 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 241 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
| 242 |
+
return x
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
class SkyworkMLP(nn.Module):
|
| 246 |
+
def __init__(self, config: SkyworkVisionConfig):
|
| 247 |
+
super().__init__()
|
| 248 |
+
self.config = config
|
| 249 |
+
self.act = ACT2FN[config.hidden_act]
|
| 250 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 251 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 252 |
+
|
| 253 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 254 |
+
hidden_states = self.fc1(hidden_states)
|
| 255 |
+
hidden_states = self.act(hidden_states)
|
| 256 |
+
hidden_states = self.fc2(hidden_states)
|
| 257 |
+
return hidden_states
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
class SkyworkVisionEncoderLayer(nn.Module):
|
| 261 |
+
def __init__(self, config: SkyworkVisionConfig, drop_path_rate: float):
|
| 262 |
+
super().__init__()
|
| 263 |
+
self.embed_dim = config.hidden_size
|
| 264 |
+
self.intermediate_size = config.intermediate_size
|
| 265 |
+
self.norm_type = config.norm_type
|
| 266 |
+
|
| 267 |
+
self.attn = SkyworkAttention(config)
|
| 268 |
+
self.mlp = SkyworkMLP(config)
|
| 269 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 270 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 271 |
+
|
| 272 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 273 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 274 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 275 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 276 |
+
|
| 277 |
+
def forward(
|
| 278 |
+
self,
|
| 279 |
+
hidden_states: torch.Tensor,
|
| 280 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
| 281 |
+
"""
|
| 282 |
+
Args:
|
| 283 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 284 |
+
"""
|
| 285 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
|
| 286 |
+
|
| 287 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
|
| 288 |
+
|
| 289 |
+
return hidden_states
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class SkyworkVisionEncoder(nn.Module):
|
| 293 |
+
"""
|
| 294 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 295 |
+
[`SkyworkEncoderLayer`].
|
| 296 |
+
|
| 297 |
+
Args:
|
| 298 |
+
config (`SkyworkConfig`):
|
| 299 |
+
The corresponding vision configuration for the `SkyworkEncoder`.
|
| 300 |
+
"""
|
| 301 |
+
|
| 302 |
+
def __init__(self, config: SkyworkVisionConfig):
|
| 303 |
+
super().__init__()
|
| 304 |
+
self.config = config
|
| 305 |
+
# stochastic depth decay rule
|
| 306 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
| 307 |
+
self.layers = nn.ModuleList([
|
| 308 |
+
SkyworkVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
| 309 |
+
self.gradient_checkpointing = True
|
| 310 |
+
|
| 311 |
+
def forward(
|
| 312 |
+
self,
|
| 313 |
+
inputs_embeds,
|
| 314 |
+
output_hidden_states: Optional[bool] = None,
|
| 315 |
+
return_dict: Optional[bool] = None,
|
| 316 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 317 |
+
r"""
|
| 318 |
+
Args:
|
| 319 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 320 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 321 |
+
output_hidden_states (`bool`, *optional*):
|
| 322 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 323 |
+
for more detail.
|
| 324 |
+
return_dict (`bool`, *optional*):
|
| 325 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 326 |
+
"""
|
| 327 |
+
output_hidden_states = (
|
| 328 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 329 |
+
)
|
| 330 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 331 |
+
|
| 332 |
+
encoder_states = () if output_hidden_states else None
|
| 333 |
+
hidden_states = inputs_embeds
|
| 334 |
+
|
| 335 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 336 |
+
if output_hidden_states:
|
| 337 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 338 |
+
if self.gradient_checkpointing and self.training:
|
| 339 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 340 |
+
encoder_layer,
|
| 341 |
+
hidden_states)
|
| 342 |
+
else:
|
| 343 |
+
layer_outputs = encoder_layer(
|
| 344 |
+
hidden_states,
|
| 345 |
+
)
|
| 346 |
+
hidden_states = layer_outputs
|
| 347 |
+
|
| 348 |
+
if output_hidden_states:
|
| 349 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 350 |
+
|
| 351 |
+
if not return_dict:
|
| 352 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
| 353 |
+
return BaseModelOutput(
|
| 354 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
class SkyworkVisionModel(PreTrainedModel):
|
| 359 |
+
main_input_name = 'pixel_values'
|
| 360 |
+
_supports_flash_attn_2 = True
|
| 361 |
+
config_class = SkyworkVisionConfig
|
| 362 |
+
_no_split_modules = ['SkyworkVisionEncoderLayer']
|
| 363 |
+
|
| 364 |
+
def __init__(self, config: SkyworkVisionConfig):
|
| 365 |
+
super().__init__(config)
|
| 366 |
+
self.config = config
|
| 367 |
+
|
| 368 |
+
self.embeddings = SkyworkVisionEmbeddings(config)
|
| 369 |
+
self.encoder = SkyworkVisionEncoder(config)
|
| 370 |
+
|
| 371 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
| 372 |
+
pos_emb = self.embeddings.position_embedding
|
| 373 |
+
_, num_positions, embed_dim = pos_emb.shape
|
| 374 |
+
cls_emb = pos_emb[:, :1, :]
|
| 375 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
| 376 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
| 377 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
| 378 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
| 379 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
| 380 |
+
self.embeddings.image_size = new_size
|
| 381 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
| 382 |
+
|
| 383 |
+
def get_input_embeddings(self):
|
| 384 |
+
return self.embeddings
|
| 385 |
+
|
| 386 |
+
def forward(
|
| 387 |
+
self,
|
| 388 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 389 |
+
output_hidden_states: Optional[bool] = None,
|
| 390 |
+
return_dict: Optional[bool] = None,
|
| 391 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
| 392 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 393 |
+
output_hidden_states = (
|
| 394 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 395 |
+
)
|
| 396 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 397 |
+
|
| 398 |
+
if pixel_values is None and pixel_embeds is None:
|
| 399 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
| 400 |
+
|
| 401 |
+
if pixel_embeds is not None:
|
| 402 |
+
hidden_states = pixel_embeds
|
| 403 |
+
else:
|
| 404 |
+
if len(pixel_values.shape) == 4:
|
| 405 |
+
hidden_states = self.embeddings(pixel_values)
|
| 406 |
+
else:
|
| 407 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
| 408 |
+
encoder_outputs = self.encoder(
|
| 409 |
+
inputs_embeds=hidden_states,
|
| 410 |
+
output_hidden_states=output_hidden_states,
|
| 411 |
+
return_dict=return_dict,
|
| 412 |
+
)
|
| 413 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
| 414 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 415 |
+
|
| 416 |
+
if not return_dict:
|
| 417 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 418 |
+
|
| 419 |
+
return BaseModelOutputWithPooling(
|
| 420 |
+
last_hidden_state=last_hidden_state,
|
| 421 |
+
pooler_output=pooled_output,
|
| 422 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 423 |
+
attentions=encoder_outputs.attentions,
|
| 424 |
+
)
|
outputs_stats.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f989c27f28851fcdd86bdfd4cd9005e4c3137d9537f43ab873b94eccc259aee7
|
| 3 |
+
size 53953211
|
pytorch_model-00001-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c5ced854215015e96cd15f1e04e233eef58c6cc62cffb184a8f3f698f6e1cdfd
|
| 3 |
+
size 1977080752
|
pytorch_model-00002-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf85fad6bfeb43d34ffbb8d528b8fb40aee8021b0501f56f83e9d1019824beda
|
| 3 |
+
size 1966729982
|
pytorch_model-00003-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae15f02c5db493a1645aee6238a38f8bd1167d26820d020d882a9b00b8672401
|
| 3 |
+
size 1966729982
|
pytorch_model-00004-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7238ac555738d0fa68a145c7495a4ab4f2770033711b781942540509894b0f8f
|
| 3 |
+
size 1966729982
|
pytorch_model-00005-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70775eaec5d616824db26c6865f15c30810dab2a7f215eebda8349e3ac7ebd78
|
| 3 |
+
size 1966729982
|
pytorch_model-00006-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b8551d094afebb1281b4a2e0cca94b85b8f35223106025a27441fcaa66c2aea
|
| 3 |
+
size 1229192920
|
pytorch_model-00007-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b8e72fe2ad67c34fc4afe42380e8f00dffcadd9578445700cf9a34ed49ae3bdf
|
| 3 |
+
size 1990292234
|
pytorch_model-00008-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8646096afad9285233ddd2dc22534b828734a4882c3ab224c44b4351564c0770
|
| 3 |
+
size 1953344189
|
pytorch_model-00009-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9fac78906486055fceee4ee65451679e69533dcba6e0c09d521523444dda4bab
|
| 3 |
+
size 1953344381
|
pytorch_model-00010-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7434eb8407b51ae7def4babed306ea352a87fc782e18f5e7d8141e2a60355ecf
|
| 3 |
+
size 1994193964
|
pytorch_model-00011-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07edddb4d0d48c1d9f1b2a6480c76181febdb28d7701f45ca809d0bd6181f1d1
|
| 3 |
+
size 1953312580
|
pytorch_model-00012-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c1f26c9a29704e8305030bcc4a0070533a483de5ff3a86d897390f48f780f0d
|
| 3 |
+
size 1953344381
|
pytorch_model-00013-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f176ec52a19984befcebe22475b20f4f12f6ec3c9fe83d706cdfccea903f9d1
|
| 3 |
+
size 1953344381
|
pytorch_model-00014-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb0b912eee4e6d62f03bef1f4a3c00b46efc62090dd6acf434944a66be5c9aa3
|
| 3 |
+
size 1994193964
|
pytorch_model-00015-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b2c25c3d97693fea21f54ad10f975c1b2900f5e5aff25bf823ca5081edea0a9
|
| 3 |
+
size 1953312580
|
pytorch_model-00016-of-00016.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2942aa032e5cfab910a4ac3b50f709e0c4bbba10aed7ab57546d40edaf89b156
|
| 3 |
+
size 1814287316
|
pytorch_model.bin.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>",
|
| 16 |
+
"<img>",
|
| 17 |
+
"</img>",
|
| 18 |
+
"<IMG_CONTEXT>",
|
| 19 |
+
"<quad>",
|
| 20 |
+
"</quad>",
|
| 21 |
+
"<ref>",
|
| 22 |
+
"</ref>",
|
| 23 |
+
"<box>",
|
| 24 |
+
"</box>"
|
| 25 |
+
],
|
| 26 |
+
"eos_token": {
|
| 27 |
+
"content": "<|im_end|>",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": false,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
},
|
| 33 |
+
"pad_token": {
|
| 34 |
+
"content": "<|endoftext|>",
|
| 35 |
+
"lstrip": false,
|
| 36 |
+
"normalized": false,
|
| 37 |
+
"rstrip": false,
|
| 38 |
+
"single_word": false
|
| 39 |
+
}
|
| 40 |
+
}
|
tokenization_internlm2.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
"""Tokenization classes for InternLM."""
|
| 18 |
+
import os
|
| 19 |
+
from shutil import copyfile
|
| 20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 21 |
+
|
| 22 |
+
import sentencepiece as spm
|
| 23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 24 |
+
from transformers.utils import logging
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
| 29 |
+
|
| 30 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
| 34 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
| 35 |
+
"""
|
| 36 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
vocab_file (`str`):
|
| 40 |
+
Path to the vocabulary file.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 44 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 45 |
+
model_input_names = ['input_ids', 'attention_mask']
|
| 46 |
+
_auto_class = 'AutoTokenizer'
|
| 47 |
+
|
| 48 |
+
def __init__(
|
| 49 |
+
self,
|
| 50 |
+
vocab_file,
|
| 51 |
+
unk_token='<unk>',
|
| 52 |
+
bos_token='<s>',
|
| 53 |
+
eos_token='</s>',
|
| 54 |
+
pad_token='</s>',
|
| 55 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 56 |
+
add_bos_token=True,
|
| 57 |
+
add_eos_token=False,
|
| 58 |
+
decode_with_prefix_space=False,
|
| 59 |
+
clean_up_tokenization_spaces=False,
|
| 60 |
+
**kwargs,
|
| 61 |
+
):
|
| 62 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 63 |
+
self.vocab_file = vocab_file
|
| 64 |
+
self.add_bos_token = add_bos_token
|
| 65 |
+
self.add_eos_token = add_eos_token
|
| 66 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
| 67 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 68 |
+
self.sp_model.Load(vocab_file)
|
| 69 |
+
self._no_prefix_space_tokens = None
|
| 70 |
+
super().__init__(
|
| 71 |
+
bos_token=bos_token,
|
| 72 |
+
eos_token=eos_token,
|
| 73 |
+
unk_token=unk_token,
|
| 74 |
+
pad_token=pad_token,
|
| 75 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 76 |
+
**kwargs,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def no_prefix_space_tokens(self):
|
| 81 |
+
if self._no_prefix_space_tokens is None:
|
| 82 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
| 83 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
|
| 84 |
+
return self._no_prefix_space_tokens
|
| 85 |
+
|
| 86 |
+
@property
|
| 87 |
+
def vocab_size(self):
|
| 88 |
+
"""Returns vocab size"""
|
| 89 |
+
return self.sp_model.get_piece_size()
|
| 90 |
+
|
| 91 |
+
@property
|
| 92 |
+
def bos_token_id(self) -> Optional[int]:
|
| 93 |
+
return self.sp_model.bos_id()
|
| 94 |
+
|
| 95 |
+
@property
|
| 96 |
+
def eos_token_id(self) -> Optional[int]:
|
| 97 |
+
return self.sp_model.eos_id()
|
| 98 |
+
|
| 99 |
+
def get_vocab(self):
|
| 100 |
+
"""Returns vocab as a dict"""
|
| 101 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 102 |
+
vocab.update(self.added_tokens_encoder)
|
| 103 |
+
return vocab
|
| 104 |
+
|
| 105 |
+
def _tokenize(self, text):
|
| 106 |
+
"""Returns a tokenized string."""
|
| 107 |
+
return self.sp_model.encode(text, out_type=str)
|
| 108 |
+
|
| 109 |
+
def _convert_token_to_id(self, token):
|
| 110 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 111 |
+
return self.sp_model.piece_to_id(token)
|
| 112 |
+
|
| 113 |
+
def _convert_id_to_token(self, index):
|
| 114 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 115 |
+
token = self.sp_model.IdToPiece(index)
|
| 116 |
+
return token
|
| 117 |
+
|
| 118 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
| 119 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
| 120 |
+
return ' ' + decoded
|
| 121 |
+
else:
|
| 122 |
+
return decoded
|
| 123 |
+
|
| 124 |
+
def convert_tokens_to_string(self, tokens):
|
| 125 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 126 |
+
current_sub_tokens = []
|
| 127 |
+
out_string = ''
|
| 128 |
+
prev_is_special = False
|
| 129 |
+
for token in tokens:
|
| 130 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 131 |
+
if token in self.all_special_tokens:
|
| 132 |
+
if not prev_is_special:
|
| 133 |
+
out_string += ' '
|
| 134 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 135 |
+
prev_is_special = True
|
| 136 |
+
current_sub_tokens = []
|
| 137 |
+
else:
|
| 138 |
+
current_sub_tokens.append(token)
|
| 139 |
+
prev_is_special = False
|
| 140 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 141 |
+
out_string = self.clean_up_tokenization(out_string)
|
| 142 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
| 143 |
+
return out_string[1:]
|
| 144 |
+
|
| 145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 146 |
+
"""
|
| 147 |
+
Save the vocabulary and special tokens file to a directory.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
save_directory (`str`):
|
| 151 |
+
The directory in which to save the vocabulary.
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
`Tuple(str)`: Paths to the files saved.
|
| 155 |
+
"""
|
| 156 |
+
if not os.path.isdir(save_directory):
|
| 157 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
| 158 |
+
return
|
| 159 |
+
out_vocab_file = os.path.join(
|
| 160 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 165 |
+
elif not os.path.isfile(self.vocab_file):
|
| 166 |
+
with open(out_vocab_file, 'wb') as fi:
|
| 167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 168 |
+
fi.write(content_spiece_model)
|
| 169 |
+
|
| 170 |
+
return (out_vocab_file,)
|
| 171 |
+
|
| 172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 173 |
+
if self.add_bos_token:
|
| 174 |
+
bos_token_ids = [self.bos_token_id]
|
| 175 |
+
else:
|
| 176 |
+
bos_token_ids = []
|
| 177 |
+
|
| 178 |
+
output = bos_token_ids + token_ids_0
|
| 179 |
+
|
| 180 |
+
if token_ids_1 is not None:
|
| 181 |
+
output = output + token_ids_1
|
| 182 |
+
|
| 183 |
+
if self.add_eos_token:
|
| 184 |
+
output = output + [self.eos_token_id]
|
| 185 |
+
|
| 186 |
+
return output
|
| 187 |
+
|
| 188 |
+
def get_special_tokens_mask(
|
| 189 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 190 |
+
) -> List[int]:
|
| 191 |
+
"""
|
| 192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
token_ids_0 (`List[int]`):
|
| 197 |
+
List of IDs.
|
| 198 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 199 |
+
Optional second list of IDs for sequence pairs.
|
| 200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 202 |
+
|
| 203 |
+
Returns:
|
| 204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 205 |
+
"""
|
| 206 |
+
if already_has_special_tokens:
|
| 207 |
+
return super().get_special_tokens_mask(
|
| 208 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
if token_ids_1 is None:
|
| 212 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
| 213 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
| 214 |
+
|
| 215 |
+
def create_token_type_ids_from_sequences(
|
| 216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 217 |
+
) -> List[int]:
|
| 218 |
+
"""
|
| 219 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
| 220 |
+
use of token type ids, therefore a list of zeros is returned.
|
| 221 |
+
|
| 222 |
+
Args:
|
| 223 |
+
token_ids_0 (`List[int]`):
|
| 224 |
+
List of IDs.
|
| 225 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 226 |
+
Optional second list of IDs for sequence pairs.
|
| 227 |
+
|
| 228 |
+
Returns:
|
| 229 |
+
`List[int]`: List of zeros.
|
| 230 |
+
"""
|
| 231 |
+
eos = [self.eos_token_id]
|
| 232 |
+
|
| 233 |
+
if token_ids_1 is None:
|
| 234 |
+
return len(token_ids_0 + eos) * [0]
|
| 235 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenization_internlm2_fast.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
"""Tokenization Fast class for InternLM."""
|
| 18 |
+
import os
|
| 19 |
+
from shutil import copyfile
|
| 20 |
+
from typing import Any, Dict, Optional, Tuple
|
| 21 |
+
|
| 22 |
+
from tokenizers import Tokenizer, decoders, normalizers, processors
|
| 23 |
+
from tokenizers.models import BPE
|
| 24 |
+
from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
|
| 25 |
+
SentencePieceExtractor,
|
| 26 |
+
SpmConverter)
|
| 27 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
| 28 |
+
from transformers.utils import logging
|
| 29 |
+
|
| 30 |
+
from .tokenization_internlm2 import InternLM2Tokenizer
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
|
| 34 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
| 38 |
+
class InternLM2Converter(SpmConverter):
|
| 39 |
+
handle_byte_fallback = True
|
| 40 |
+
|
| 41 |
+
def vocab(self, proto):
|
| 42 |
+
vocab = [
|
| 43 |
+
('<unk>', 0.0),
|
| 44 |
+
('<s>', 0.0),
|
| 45 |
+
('</s>', 0.0),
|
| 46 |
+
]
|
| 47 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
| 48 |
+
return vocab
|
| 49 |
+
|
| 50 |
+
def unk_id(self, proto):
|
| 51 |
+
unk_id = 0
|
| 52 |
+
return unk_id
|
| 53 |
+
|
| 54 |
+
def decoder(self, replacement, add_prefix_space):
|
| 55 |
+
return decoders.Sequence(
|
| 56 |
+
[
|
| 57 |
+
decoders.Replace('▁', ' '),
|
| 58 |
+
decoders.ByteFallback(),
|
| 59 |
+
decoders.Fuse(),
|
| 60 |
+
decoders.Strip(content=' ', left=1),
|
| 61 |
+
]
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def tokenizer(self, proto):
|
| 65 |
+
model_type = proto.trainer_spec.model_type
|
| 66 |
+
vocab_scores = self.vocab(proto)
|
| 67 |
+
# special tokens
|
| 68 |
+
added_tokens = self.original_tokenizer.added_tokens_decoder
|
| 69 |
+
for i in range(len(vocab_scores)):
|
| 70 |
+
piece, score = vocab_scores[i]
|
| 71 |
+
if i in added_tokens:
|
| 72 |
+
vocab_scores[i] = (added_tokens[i].content, score)
|
| 73 |
+
if model_type == 1:
|
| 74 |
+
raise RuntimeError('InternLM2 is supposed to be a BPE model!')
|
| 75 |
+
|
| 76 |
+
elif model_type == 2:
|
| 77 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
| 78 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
| 79 |
+
tokenizer = Tokenizer(
|
| 80 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
| 81 |
+
)
|
| 82 |
+
tokenizer.add_special_tokens(
|
| 83 |
+
[ added_token for index, added_token in added_tokens.items()]
|
| 84 |
+
)
|
| 85 |
+
else:
|
| 86 |
+
raise Exception(
|
| 87 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return tokenizer
|
| 91 |
+
|
| 92 |
+
def normalizer(self, proto):
|
| 93 |
+
normalizers_list = []
|
| 94 |
+
if proto.normalizer_spec.add_dummy_prefix:
|
| 95 |
+
normalizers_list.append(normalizers.Prepend(prepend='▁'))
|
| 96 |
+
normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
|
| 97 |
+
return normalizers.Sequence(normalizers_list)
|
| 98 |
+
|
| 99 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
| 100 |
+
return None
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
| 107 |
+
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
| 108 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 109 |
+
slow_tokenizer_class = InternLM2Tokenizer
|
| 110 |
+
padding_side = 'left'
|
| 111 |
+
model_input_names = ['input_ids', 'attention_mask']
|
| 112 |
+
_auto_class = 'AutoTokenizer'
|
| 113 |
+
|
| 114 |
+
def __init__(
|
| 115 |
+
self,
|
| 116 |
+
vocab_file,
|
| 117 |
+
unk_token='<unk>',
|
| 118 |
+
bos_token='<s>',
|
| 119 |
+
eos_token='</s>',
|
| 120 |
+
pad_token='</s>',
|
| 121 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 122 |
+
add_bos_token=True,
|
| 123 |
+
add_eos_token=False,
|
| 124 |
+
decode_with_prefix_space=False,
|
| 125 |
+
clean_up_tokenization_spaces=False,
|
| 126 |
+
**kwargs,
|
| 127 |
+
):
|
| 128 |
+
super().__init__(
|
| 129 |
+
vocab_file=vocab_file,
|
| 130 |
+
unk_token=unk_token,
|
| 131 |
+
bos_token=bos_token,
|
| 132 |
+
eos_token=eos_token,
|
| 133 |
+
pad_token=pad_token,
|
| 134 |
+
sp_model_kwargs=sp_model_kwargs,
|
| 135 |
+
add_bos_token=add_bos_token,
|
| 136 |
+
add_eos_token=add_eos_token,
|
| 137 |
+
decode_with_prefix_space=decode_with_prefix_space,
|
| 138 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 139 |
+
**kwargs,
|
| 140 |
+
)
|
| 141 |
+
self._add_bos_token = add_bos_token
|
| 142 |
+
self._add_eos_token = add_eos_token
|
| 143 |
+
self.update_post_processor()
|
| 144 |
+
self.vocab_file = vocab_file
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def can_save_slow_tokenizer(self) -> bool:
|
| 148 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
| 149 |
+
|
| 150 |
+
def update_post_processor(self):
|
| 151 |
+
"""
|
| 152 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
| 153 |
+
"""
|
| 154 |
+
bos = self.bos_token
|
| 155 |
+
bos_token_id = self.bos_token_id
|
| 156 |
+
if bos is None and self.add_bos_token:
|
| 157 |
+
raise ValueError('add_bos_token = True but bos_token = None')
|
| 158 |
+
|
| 159 |
+
eos = self.eos_token
|
| 160 |
+
eos_token_id = self.eos_token_id
|
| 161 |
+
if eos is None and self.add_eos_token:
|
| 162 |
+
raise ValueError('add_eos_token = True but eos_token = None')
|
| 163 |
+
|
| 164 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
| 165 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
| 166 |
+
|
| 167 |
+
special_tokens = []
|
| 168 |
+
if self.add_bos_token:
|
| 169 |
+
special_tokens.append((bos, bos_token_id))
|
| 170 |
+
if self.add_eos_token:
|
| 171 |
+
special_tokens.append((eos, eos_token_id))
|
| 172 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
| 173 |
+
single=single, pair=pair, special_tokens=special_tokens
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
@property
|
| 177 |
+
def add_eos_token(self):
|
| 178 |
+
return self._add_eos_token
|
| 179 |
+
|
| 180 |
+
@property
|
| 181 |
+
def add_bos_token(self):
|
| 182 |
+
return self._add_bos_token
|
| 183 |
+
|
| 184 |
+
@add_eos_token.setter
|
| 185 |
+
def add_eos_token(self, value):
|
| 186 |
+
self._add_eos_token = value
|
| 187 |
+
self.update_post_processor()
|
| 188 |
+
|
| 189 |
+
@add_bos_token.setter
|
| 190 |
+
def add_bos_token(self, value):
|
| 191 |
+
self._add_bos_token = value
|
| 192 |
+
self.update_post_processor()
|
| 193 |
+
|
| 194 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 195 |
+
if not self.can_save_slow_tokenizer:
|
| 196 |
+
raise ValueError(
|
| 197 |
+
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
|
| 198 |
+
'tokenizer.'
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
if not os.path.isdir(save_directory):
|
| 202 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
| 203 |
+
return
|
| 204 |
+
out_vocab_file = os.path.join(
|
| 205 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
| 209 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 210 |
+
|
| 211 |
+
return (out_vocab_file,)
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34a2790c1c37a3f4774fef44480b2b50e3c0f40f2122d26e057f249460b8735d
|
| 3 |
+
size 11423542
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"151643": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"151644": {
|
| 15 |
+
"content": "<|im_start|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"151645": {
|
| 23 |
+
"content": "<|im_end|>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"151646": {
|
| 31 |
+
"content": "<|object_ref_start|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"151647": {
|
| 39 |
+
"content": "<|object_ref_end|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"151648": {
|
| 47 |
+
"content": "<|box_start|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"151649": {
|
| 55 |
+
"content": "<|box_end|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"151650": {
|
| 63 |
+
"content": "<|quad_start|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"151651": {
|
| 71 |
+
"content": "<|quad_end|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"151652": {
|
| 79 |
+
"content": "<|vision_start|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"151653": {
|
| 87 |
+
"content": "<|vision_end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"151654": {
|
| 95 |
+
"content": "<|vision_pad|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"151655": {
|
| 103 |
+
"content": "<|image_pad|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"151656": {
|
| 111 |
+
"content": "<|video_pad|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
},
|
| 118 |
+
"151657": {
|
| 119 |
+
"content": "<tool_call>",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"151658": {
|
| 127 |
+
"content": "</tool_call>",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"151659": {
|
| 135 |
+
"content": "<|fim_prefix|>",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"151660": {
|
| 143 |
+
"content": "<|fim_middle|>",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": false,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"151661": {
|
| 151 |
+
"content": "<|fim_suffix|>",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"151662": {
|
| 159 |
+
"content": "<|fim_pad|>",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": false,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"151663": {
|
| 167 |
+
"content": "<|repo_name|>",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": false,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"151664": {
|
| 175 |
+
"content": "<|file_sep|>",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": false,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"151665": {
|
| 183 |
+
"content": "<img>",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": false,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": true
|
| 189 |
+
},
|
| 190 |
+
"151666": {
|
| 191 |
+
"content": "</img>",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": false,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": true
|
| 197 |
+
},
|
| 198 |
+
"151667": {
|
| 199 |
+
"content": "<IMG_CONTEXT>",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": false,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": true
|
| 205 |
+
},
|
| 206 |
+
"151668": {
|
| 207 |
+
"content": "<quad>",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": false,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": true
|
| 213 |
+
},
|
| 214 |
+
"151669": {
|
| 215 |
+
"content": "</quad>",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": false,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": true
|
| 221 |
+
},
|
| 222 |
+
"151670": {
|
| 223 |
+
"content": "<ref>",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": true
|
| 229 |
+
},
|
| 230 |
+
"151671": {
|
| 231 |
+
"content": "</ref>",
|
| 232 |
+
"lstrip": false,
|
| 233 |
+
"normalized": false,
|
| 234 |
+
"rstrip": false,
|
| 235 |
+
"single_word": false,
|
| 236 |
+
"special": true
|
| 237 |
+
},
|
| 238 |
+
"151672": {
|
| 239 |
+
"content": "<box>",
|
| 240 |
+
"lstrip": false,
|
| 241 |
+
"normalized": false,
|
| 242 |
+
"rstrip": false,
|
| 243 |
+
"single_word": false,
|
| 244 |
+
"special": true
|
| 245 |
+
},
|
| 246 |
+
"151673": {
|
| 247 |
+
"content": "</box>",
|
| 248 |
+
"lstrip": false,
|
| 249 |
+
"normalized": false,
|
| 250 |
+
"rstrip": false,
|
| 251 |
+
"single_word": false,
|
| 252 |
+
"special": true
|
| 253 |
+
}
|
| 254 |
+
},
|
| 255 |
+
"additional_special_tokens": [
|
| 256 |
+
"<|im_start|>",
|
| 257 |
+
"<|im_end|>",
|
| 258 |
+
"<|object_ref_start|>",
|
| 259 |
+
"<|object_ref_end|>",
|
| 260 |
+
"<|box_start|>",
|
| 261 |
+
"<|box_end|>",
|
| 262 |
+
"<|quad_start|>",
|
| 263 |
+
"<|quad_end|>",
|
| 264 |
+
"<|vision_start|>",
|
| 265 |
+
"<|vision_end|>",
|
| 266 |
+
"<|vision_pad|>",
|
| 267 |
+
"<|image_pad|>",
|
| 268 |
+
"<|video_pad|>",
|
| 269 |
+
"<img>",
|
| 270 |
+
"</img>",
|
| 271 |
+
"<IMG_CONTEXT>",
|
| 272 |
+
"<quad>",
|
| 273 |
+
"</quad>",
|
| 274 |
+
"<ref>",
|
| 275 |
+
"</ref>",
|
| 276 |
+
"<box>",
|
| 277 |
+
"</box>"
|
| 278 |
+
],
|
| 279 |
+
"bos_token": null,
|
| 280 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n",
|
| 281 |
+
"clean_up_tokenization_spaces": false,
|
| 282 |
+
"eos_token": "<|im_end|>",
|
| 283 |
+
"errors": "replace",
|
| 284 |
+
"extra_special_tokens": {},
|
| 285 |
+
"model_max_length": 12000,
|
| 286 |
+
"pad_token": "<|endoftext|>",
|
| 287 |
+
"split_special_tokens": false,
|
| 288 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 289 |
+
"unk_token": null
|
| 290 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|