Update configuration_doge.py
Browse files- configuration_doge.py +241 -228
configuration_doge.py
CHANGED
|
@@ -1,228 +1,241 @@
|
|
| 1 |
-
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
-
# This file was automatically generated from src/transformers/models/doge/modular_doge.py.
|
| 3 |
-
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
-
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
-
# modular_doge.py file directly. One of our CI enforces this.
|
| 6 |
-
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
-
# coding=utf-8
|
| 8 |
-
# Copyright
|
| 9 |
-
#
|
| 10 |
-
#
|
| 11 |
-
#
|
| 12 |
-
#
|
| 13 |
-
#
|
| 14 |
-
#
|
| 15 |
-
#
|
| 16 |
-
#
|
| 17 |
-
#
|
| 18 |
-
#
|
| 19 |
-
#
|
| 20 |
-
#
|
| 21 |
-
#
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
from transformers.
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
Whether
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
`
|
| 88 |
-
Only used with '
|
| 89 |
-
|
| 90 |
-
`
|
| 91 |
-
Only used with '
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
```python
|
| 128 |
-
>>> from transformers import DogeConfig, DogeModel
|
| 129 |
-
|
| 130 |
-
>>> # Initializing a Doge-320M style configuration
|
| 131 |
-
>>> configuration = DogeConfig()
|
| 132 |
-
|
| 133 |
-
>>> # Initializing a model from the Doge-320M style configuration
|
| 134 |
-
>>> model = DogeModel(configuration)
|
| 135 |
-
|
| 136 |
-
>>> # Accessing the model configuration
|
| 137 |
-
>>> configuration = model.config
|
| 138 |
-
```"""
|
| 139 |
-
|
| 140 |
-
model_type = "doge"
|
| 141 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
| 142 |
-
# Default tensor parallel plan for base model `DogeModel`
|
| 143 |
-
base_model_tp_plan = {
|
| 144 |
-
"layers.*.self_attn.q_proj": "colwise",
|
| 145 |
-
"layers.*.self_attn.k_proj": "colwise",
|
| 146 |
-
"layers.*.self_attn.v_proj": "colwise",
|
| 147 |
-
"layers.*.self_attn.dt_proj": "rowwise",
|
| 148 |
-
"layers.*.self_attn.o_proj": "rowwise",
|
| 149 |
-
"layers.*.
|
| 150 |
-
"layers.*.
|
| 151 |
-
"layers.*.
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
self.
|
| 198 |
-
self.
|
| 199 |
-
self.
|
| 200 |
-
self.
|
| 201 |
-
|
| 202 |
-
self.
|
| 203 |
-
self.
|
| 204 |
-
self.
|
| 205 |
-
self.
|
| 206 |
-
self.
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 2 |
+
# This file was automatically generated from src/transformers/models/doge/modular_doge.py.
|
| 3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
+
# modular_doge.py file directly. One of our CI enforces this.
|
| 6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
| 7 |
+
# coding=utf-8
|
| 8 |
+
# Copyright 2025 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
|
| 9 |
+
#
|
| 10 |
+
# The Doge family of small language models is trained by SmallDoge Team.
|
| 11 |
+
#
|
| 12 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 13 |
+
# you may not use this file except in compliance with the License.
|
| 14 |
+
# You may obtain a copy of the License at
|
| 15 |
+
#
|
| 16 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 17 |
+
#
|
| 18 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 19 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 20 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 21 |
+
# See the License for the specific language governing permissions and
|
| 22 |
+
# limitations under the License.
|
| 23 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 24 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class DogeConfig(PretrainedConfig):
|
| 28 |
+
r"""
|
| 29 |
+
This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
|
| 30 |
+
model according to the specified arguments, defining the model architecture like [SmallDoge/Doge-320M](https://huggingface.co/SmallDoge/Doge-320M).
|
| 31 |
+
|
| 32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 33 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
vocab_size (`int`, *optional*, defaults to 32768):
|
| 37 |
+
Vocabulary size of the Doge2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DogeModel`]
|
| 38 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
| 39 |
+
Dimension of the hidden representations.
|
| 40 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
| 41 |
+
Dimension of the MLP representations.
|
| 42 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 43 |
+
Number of hidden layers in the Transformer decoder.
|
| 44 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
| 45 |
+
Dropout probability for each sequence transformation and state transformation module.
|
| 46 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 47 |
+
The non-linear activation function (function or string) in the decoder.
|
| 48 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 49 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 50 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 51 |
+
The epsilon used by the rms normalization layers.
|
| 52 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 53 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 54 |
+
relevant if `config.is_decoder=True`.
|
| 55 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 56 |
+
Whether the model's input and output word embeddings should be tied.
|
| 57 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 58 |
+
The maximum sequence length that this model might ever be used with.
|
| 59 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 60 |
+
The base period of the RoPE embeddings.
|
| 61 |
+
rope_scaling (`Dict`, *optional*):
|
| 62 |
+
Dictionary containing the scaling configuration for the RoPE embeddings.
|
| 63 |
+
NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly.
|
| 64 |
+
Doge family of small models use `{ 'rope_type': 'dynamic', 'factor': 4.0, 'original_max_position_embeddings': 2048 }` as the default value.
|
| 65 |
+
Expected contents:
|
| 66 |
+
`rope_type` (`str`):
|
| 67 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation.
|
| 68 |
+
`factor` (`float`, *optional*):
|
| 69 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings.
|
| 70 |
+
In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length.
|
| 71 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 72 |
+
Used with 'dynamic', 'longrope' and 'llama3'.
|
| 73 |
+
The original max position embeddings used during pretraining.
|
| 74 |
+
`attention_factor` (`float`, *optional*):
|
| 75 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 76 |
+
computation.
|
| 77 |
+
If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
|
| 78 |
+
`beta_fast` (`float`, *optional*):
|
| 79 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 80 |
+
ramp function. If unspecified, it defaults to 32.
|
| 81 |
+
`beta_slow` (`float`, *optional*):
|
| 82 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 83 |
+
ramp function. If unspecified, it defaults to 1.
|
| 84 |
+
`short_factor` (`List[float]`, *optional*):
|
| 85 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<`original_max_position_embeddings`).
|
| 86 |
+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
| 87 |
+
`long_factor` (`List[float]`, *optional*):
|
| 88 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<`original_max_position_embeddings`).
|
| 89 |
+
Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2
|
| 90 |
+
`low_freq_factor` (`float`, *optional*):
|
| 91 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 92 |
+
`high_freq_factor` (`float`, *optional*):
|
| 93 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 94 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
| 95 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 96 |
+
num_key_value_heads (`int`, *optional*):
|
| 97 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention.
|
| 98 |
+
If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 99 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
|
| 100 |
+
When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group.
|
| 101 |
+
For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf).
|
| 102 |
+
If it is not specified, will default to `num_attention_heads`.
|
| 103 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 104 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 105 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 106 |
+
The dropout ratio for the attention probabilities.
|
| 107 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
| 108 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
| 109 |
+
sliding_window (`int`, *optional*):
|
| 110 |
+
Sliding window attention window size. If not specified, will default to `None`.
|
| 111 |
+
keep_window_size (`int`, *optional*, defaults to 2048):
|
| 112 |
+
The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value.
|
| 113 |
+
is_moe (`bool`, *optional*, defaults to `False`):
|
| 114 |
+
Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize.
|
| 115 |
+
num_experts (`int`, *optional*, defaults to 16384):
|
| 116 |
+
Number of routed experts in the model. This is only used when `is_moe=True`.
|
| 117 |
+
num_experts_per_tok (`int`, *optional*, defaults to 64):
|
| 118 |
+
Number of selected experts to route per-token.
|
| 119 |
+
norm_topk_prob (`bool`, *optional*, defaults to `False`):
|
| 120 |
+
Whether to normalize the topk probabilities.
|
| 121 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
| 122 |
+
Whether or not the router logits should be returned by the model. Enabling this will also
|
| 123 |
+
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
|
| 124 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
| 125 |
+
The aux loss factor for the total loss.
|
| 126 |
+
|
| 127 |
+
```python
|
| 128 |
+
>>> from transformers import DogeConfig, DogeModel
|
| 129 |
+
|
| 130 |
+
>>> # Initializing a Doge-320M style configuration
|
| 131 |
+
>>> configuration = DogeConfig()
|
| 132 |
+
|
| 133 |
+
>>> # Initializing a model from the Doge-320M style configuration
|
| 134 |
+
>>> model = DogeModel(configuration)
|
| 135 |
+
|
| 136 |
+
>>> # Accessing the model configuration
|
| 137 |
+
>>> configuration = model.config
|
| 138 |
+
```"""
|
| 139 |
+
|
| 140 |
+
model_type = "doge"
|
| 141 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 142 |
+
# Default tensor parallel plan for base model `DogeModel`
|
| 143 |
+
base_model_tp_plan = {
|
| 144 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 145 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 146 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 147 |
+
"layers.*.self_attn.dt_proj": "rowwise",
|
| 148 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 149 |
+
"layers.*.input_layernorm.weight": "sequence_parallel",
|
| 150 |
+
"layers.*.input_residual.weight": "sequence_parallel",
|
| 151 |
+
"layers.*.post_attention_layernorm.weight": "sequence_parallel",
|
| 152 |
+
"layers.*.post_attention_residual.weight": "sequence_parallel",
|
| 153 |
+
"norm.weight": "sequence_parallel",
|
| 154 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 155 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 156 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 157 |
+
"layers.*.mlp.router_gate": "colwise_rep",
|
| 158 |
+
"layers.*.mlp.down_embed": "rowwise_rep",
|
| 159 |
+
"layers.*.mlp.up_embed": "rowwise_rep",
|
| 160 |
+
}
|
| 161 |
+
base_model_pp_plan = {
|
| 162 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 163 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 164 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
def __init__(
|
| 168 |
+
self,
|
| 169 |
+
vocab_size=32768,
|
| 170 |
+
hidden_size=1024,
|
| 171 |
+
intermediate_size=2048,
|
| 172 |
+
num_hidden_layers=32,
|
| 173 |
+
hidden_dropout=0.0,
|
| 174 |
+
hidden_act="silu",
|
| 175 |
+
initializer_range=0.02,
|
| 176 |
+
rms_norm_eps=1e-06,
|
| 177 |
+
use_cache=True,
|
| 178 |
+
tie_word_embeddings=False,
|
| 179 |
+
max_position_embeddings=2048,
|
| 180 |
+
rope_theta=10000.0,
|
| 181 |
+
rope_scaling=None,
|
| 182 |
+
num_attention_heads=8,
|
| 183 |
+
num_key_value_heads=None,
|
| 184 |
+
attention_bias=False,
|
| 185 |
+
attention_dropout=0.0,
|
| 186 |
+
mlp_bias=False,
|
| 187 |
+
sliding_window=None,
|
| 188 |
+
keep_window_size=2048,
|
| 189 |
+
is_moe=False,
|
| 190 |
+
num_experts=16384,
|
| 191 |
+
num_experts_per_tok=64,
|
| 192 |
+
norm_topk_prob=False,
|
| 193 |
+
output_router_logits=False,
|
| 194 |
+
router_aux_loss_coef=0.001,
|
| 195 |
+
**kwargs,
|
| 196 |
+
):
|
| 197 |
+
self.vocab_size = vocab_size
|
| 198 |
+
self.hidden_size = hidden_size
|
| 199 |
+
self.intermediate_size = intermediate_size
|
| 200 |
+
self.num_hidden_layers = num_hidden_layers
|
| 201 |
+
|
| 202 |
+
self.hidden_dropout = hidden_dropout
|
| 203 |
+
self.hidden_act = hidden_act
|
| 204 |
+
self.initializer_range = initializer_range
|
| 205 |
+
self.rms_norm_eps = rms_norm_eps
|
| 206 |
+
self.use_cache = use_cache
|
| 207 |
+
|
| 208 |
+
self.max_position_embeddings = max_position_embeddings
|
| 209 |
+
self.rope_theta = rope_theta
|
| 210 |
+
self.rope_scaling = rope_scaling
|
| 211 |
+
self.num_attention_heads = num_attention_heads
|
| 212 |
+
self.num_key_value_heads = num_key_value_heads
|
| 213 |
+
self.attention_bias = attention_bias
|
| 214 |
+
self.attention_dropout = attention_dropout
|
| 215 |
+
self.mlp_bias = mlp_bias
|
| 216 |
+
self.sliding_window = sliding_window
|
| 217 |
+
self.keep_window_size = keep_window_size
|
| 218 |
+
self.is_moe = is_moe
|
| 219 |
+
self.num_experts = num_experts
|
| 220 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 221 |
+
self.norm_topk_prob = norm_topk_prob
|
| 222 |
+
self.output_router_logits = output_router_logits
|
| 223 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
| 224 |
+
|
| 225 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 226 |
+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
| 227 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 228 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 229 |
+
rope_config_validation(self)
|
| 230 |
+
|
| 231 |
+
# for backward compatibility
|
| 232 |
+
if num_key_value_heads is None:
|
| 233 |
+
self.num_key_value_heads = num_attention_heads
|
| 234 |
+
|
| 235 |
+
super().__init__(
|
| 236 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 237 |
+
**kwargs,
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
__all__ = ["DogeConfig"]
|