File size: 11,057 Bytes
72ca110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env python
"""
Quantize and save VibeVoice model using bitsandbytes
Creates a pre-quantized model that can be shared and loaded directly
"""

import os
import json
import shutil
import torch
from pathlib import Path
from transformers import BitsAndBytesConfig
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from transformers.utils import logging
from safetensors.torch import save_file

logging.set_verbosity_info()

def quantize_and_save_model(
    model_path: str,
    output_dir: str,
    bits: int = 4,
    quant_type: str = "nf4"
):
    """Quantize VibeVoice model and save it for distribution"""
    
    print(f"\n{'='*70}")
    print(f"VIBEVOICE QUANTIZATION - {bits}-bit ({quant_type})")
    print(f"{'='*70}")
    print(f"Source: {model_path}")
    print(f"Output: {output_dir}")
    print(f"{'='*70}\n")
    
    # Create output directory
    output_path = Path(output_dir)
    output_path.mkdir(parents=True, exist_ok=True)
    
    # Configure quantization
    if bits == 4:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type=quant_type
        )
    elif bits == 8:
        bnb_config = BitsAndBytesConfig(
            load_in_8bit=True,
            bnb_8bit_compute_dtype=torch.bfloat16,
        )
    else:
        raise ValueError(f"Unsupported bit width: {bits}")
    
    print("πŸ”§ Loading and quantizing model...")
    
    # Load the model with quantization
    model = VibeVoiceForConditionalGenerationInference.from_pretrained(
        model_path,
        quantization_config=bnb_config,
        device_map='cuda',
        torch_dtype=torch.bfloat16,
    )
    
    # Get memory usage
    memory_gb = torch.cuda.memory_allocated() / 1e9
    print(f"πŸ’Ύ Quantized model memory usage: {memory_gb:.1f} GB")
    
    # Save the quantized model
    print("\nπŸ“¦ Saving quantized model...")
    
    # Method 1: Try using save_pretrained with quantization info
    try:
        # Save model with quantization config
        model.save_pretrained(
            output_path,
            safe_serialization=True,
            max_shard_size="5GB"
        )
        
        # Save the quantization config separately
        quant_config_dict = {
            "quantization_config": bnb_config.to_dict(),
            "quantization_method": "bitsandbytes",
            "bits": bits,
            "quant_type": quant_type
        }
        
        with open(output_path / "quantization_config.json", 'w') as f:
            json.dump(quant_config_dict, f, indent=2)
            
        print("βœ… Model saved with integrated quantization")
        
    except Exception as e:
        print(f"⚠️ Standard save failed: {e}")
        print("Trying alternative save method...")
        
        # Method 2: Save state dict with quantized weights
        save_quantized_state_dict(model, output_path, bnb_config)
    
    # Copy processor files
    print("\nπŸ“‹ Copying processor files...")
    processor = VibeVoiceProcessor.from_pretrained(model_path)
    processor.save_pretrained(output_path)
    
    # Copy additional config files
    for file in ["config.json", "generation_config.json"]:
        src = Path(model_path) / file
        if src.exists():
            shutil.copy2(src, output_path / file)
    
    # Update config to indicate quantization
    config_path = output_path / "config.json"
    if config_path.exists():
        with open(config_path, 'r') as f:
            config = json.load(f)
        
        config["quantization_config"] = bnb_config.to_dict()
        config["_quantization_method"] = "bitsandbytes"
        
        with open(config_path, 'w') as f:
            json.dump(config, f, indent=2)
    
    print(f"\nβœ… Quantized model saved to: {output_path}")
    
    # Create loading script
    create_loading_script(output_path, bits, quant_type)
    
    return output_path

def save_quantized_state_dict(model, output_path, bnb_config):
    """Alternative method to save quantized weights"""
    print("\nπŸ”§ Saving quantized state dict...")
    
    # Get the state dict
    state_dict = model.state_dict()
    
    # Separate quantized and non-quantized parameters
    quantized_state = {}
    metadata = {
        "quantized_modules": [],
        "quantization_config": bnb_config.to_dict()
    }
    
    for name, param in state_dict.items():
        # Check if this is a quantized parameter
        if hasattr(param, 'quant_state'):
            # Store quantization state
            metadata["quantized_modules"].append(name)
            quantized_state[name] = param.data
        else:
            # Regular parameter
            quantized_state[name] = param
    
    # Save using safetensors
    save_file(quantized_state, output_path / "model.safetensors", metadata=metadata)
    
    # Save metadata
    with open(output_path / "quantization_metadata.json", 'w') as f:
        json.dump(metadata, f, indent=2)

def create_loading_script(output_path, bits, quant_type):
    """Create a script to load the quantized model"""
    
    script_content = f'''#!/usr/bin/env python
"""
Load and use the {bits}-bit quantized VibeVoice model
"""

import torch
from transformers import BitsAndBytesConfig
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor

def load_quantized_model(model_path="{output_path}"):
    """Load the pre-quantized VibeVoice model"""
    
    print("Loading {bits}-bit quantized VibeVoice model...")
    
    # The model is already quantized, but we need to specify the config
    # to ensure proper loading of quantized weights
    bnb_config = BitsAndBytesConfig(
        load_in_{bits}bit=True,
        bnb_{bits}bit_compute_dtype=torch.bfloat16,
        {"bnb_4bit_use_double_quant=True," if bits == 4 else ""}
        {"bnb_4bit_quant_type='" + quant_type + "'" if bits == 4 else ""}
    )
    
    # Load processor
    processor = VibeVoiceProcessor.from_pretrained(model_path)
    
    # Load model
    model = VibeVoiceForConditionalGenerationInference.from_pretrained(
        model_path,
        quantization_config=bnb_config,
        device_map='cuda',
        torch_dtype=torch.bfloat16,
    )
    
    model.eval()
    
    print("βœ… Model loaded successfully!")
    print(f"πŸ’Ύ Memory usage: {{torch.cuda.memory_allocated() / 1e9:.1f}} GB")
    
    return model, processor

# Example usage
if __name__ == "__main__":
    model, processor = load_quantized_model()
    
    # Generate audio
    text = "Speaker 1: Hello! Speaker 2: Hi there!"
    inputs = processor(
        text=[text],
        voice_samples=[["path/to/voice1.wav", "path/to/voice2.wav"]],
        padding=True,
        return_tensors="pt",
    )
    
    with torch.no_grad():
        outputs = model.generate(**inputs)
    
    # Save audio
    processor.save_audio(outputs.speech_outputs[0], "output.wav")
'''
    
    script_path = output_path / f"load_quantized_{bits}bit.py"
    with open(script_path, 'w') as f:
        f.write(script_content)
    
    print(f"πŸ“ Created loading script: {script_path}")

def test_quantized_model(model_path):
    """Test loading and generating with the quantized model"""
    print(f"\nπŸ§ͺ Testing quantized model from: {model_path}")
    
    try:
        # Load the quantized model
        processor = VibeVoiceProcessor.from_pretrained(model_path)
        
        # Load with auto-detection of quantization
        model = VibeVoiceForConditionalGenerationInference.from_pretrained(
            model_path,
            device_map='cuda',
            torch_dtype=torch.bfloat16,
        )
        
        print("βœ… Model loaded successfully!")
        
        # Quick generation test
        test_text = "Speaker 1: Testing quantized model. Speaker 2: It works!"
        print(f"\n🎀 Testing generation with: '{test_text}'")
        
        # Use demo voices
        voices_dir = "/home/deveraux/Desktop/vibevoice/VibeVoice-main/demo/voices"
        speaker_voices = [
            os.path.join(voices_dir, "en-Alice_woman.wav"),
            os.path.join(voices_dir, "en-Carter_man.wav")
        ]
        
        inputs = processor(
            text=[test_text],
            voice_samples=[speaker_voices],
            padding=True,
            return_tensors="pt",
            return_attention_mask=True,
        )
        
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=None,
                cfg_scale=1.3,
                tokenizer=processor.tokenizer,
                generation_config={'do_sample': False},
            )
        
        print("βœ… Generation successful!")
        
        # Save test output
        output_path = Path(model_path) / "test_output.wav"
        processor.save_audio(outputs.speech_outputs[0], output_path=str(output_path))
        print(f"πŸ”Š Test audio saved to: {output_path}")
        
        return True
        
    except Exception as e:
        print(f"❌ Test failed: {e}")
        return False

def main():
    import argparse
    parser = argparse.ArgumentParser(description="Quantize and save VibeVoice model")
    parser.add_argument("--model_path", default="/home/deveraux/Desktop/vibevoice/VibeVoice-Large-pt",
                       help="Path to the original model")
    parser.add_argument("--output_dir", default="/home/deveraux/Desktop/vibevoice/VibeVoice-Large-4bit",
                       help="Output directory for quantized model")
    parser.add_argument("--bits", type=int, default=4, choices=[4, 8],
                       help="Quantization bits (4 or 8)")
    parser.add_argument("--quant_type", default="nf4", choices=["nf4", "fp4"],
                       help="4-bit quantization type")
    parser.add_argument("--test", action="store_true",
                       help="Test the quantized model after saving")
    
    args = parser.parse_args()
    
    # Update output dir based on bits
    if str(args.bits) not in args.output_dir:
        args.output_dir = args.output_dir.replace("4bit", f"{args.bits}bit")
    
    # Quantize and save
    output_path = quantize_and_save_model(
        args.model_path,
        args.output_dir,
        args.bits,
        args.quant_type
    )
    
    # Test if requested
    if args.test:
        test_quantized_model(output_path)
    
    print(f"\nπŸŽ‰ Done! Quantized model ready for distribution at: {output_path}")
    print(f"\nπŸ“¦ To share this model:")
    print(f"1. Upload the entire '{output_path}' directory")
    print(f"2. Users can load it with the provided script or directly with transformers")
    print(f"3. The model will load in {args.bits}-bit without additional quantization")

if __name__ == "__main__":
    main()