File size: 6,152 Bytes
82cb7db 4987286 82cb7db 42935e2 c2cb341 82cb7db 4987286 82cb7db 4987286 82cb7db 8eaab71 82cb7db 7b194cb 8eaab71 7b194cb eba85bf 7b194cb eba85bf 82cb7db 7b194cb 82cb7db ff9a6a0 82cb7db 8eaab71 82cb7db 8eaab71 82cb7db 8eaab71 c02209a 8eaab71 82cb7db f7ee844 82cb7db f7ee844 82cb7db f7ee844 f10ddcf f7ee844 f3bbe7e f10ddcf cd8044a f10ddcf 82cb7db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
---
license: cc-by-2.0
language:
- it
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
The model has 31,536,128 trainable parameters
### Model Description
<!-- Provide a longer summary of what this model is. -->
Model trained using Early Exit architecture: 12 conformer layers, 6 CTC decoders.
The model has been generated by averaging from epoch 16 to epoch 26.
This model can handle only speech signals sampled at 16 kHz.
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
To be used for ASR: code for using the model available at https://github.com/SpeechTechLab/early-exit-transformer
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code at https://github.com/SpeechTechLab/early-exit-transformer.
## Training Details
decoder_mode='ctc', model_type='early_conformer', bpe=True
distill=False, language_model=None, language_model_dict=None, avg_model_start=0, avg_model_end=5
max_len=2000, d_model=256, n_enc_layers_per_exit=2, n_enc_exits=6, n_dec_layers=6, n_heads=8
d_feed_forward=2048, depthwise_kernel_size=31, max_utterance_length=600, sample_rate=16000
n_fft=512, win_length=320, hop_length=160, n_mels=80
src_pad_idx=0, trg_pad_idx=126, trg_sos_idx=1, trg_eos_idx=2, enc_voc_size=256, dec_voc_size=256
sp=<sentencepiece.SentencePieceProcessor=;'cv.bpe-256.model' lexicon='cv-bpe-256.lex', tokens='cv-bpe-256.tok')
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
Common Voice (Italian) [~410h],
MultiLingual LibriSpeech (Italian) [~247h],
VoxPopuli (Italian) [~87h],
You Tube Commons (Italian) [~1580h]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
47 epochs on CV followed by 80 epochs on CV+MLS+Voxpopuli followed by 5 epochs on YPT+CV+MLS+Voxpopuli
#### Training Hyperparameters
shuffle=True, batch_size=64, n_batch_split=8, drop_prob=0.1, init_lr=1e-05, adam_eps=1e-09, weight_decay=0.0001, warmup=[trining dataset size], clip=1.0
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation (%WER)
<!-- This section describes the evaluation protocols and provides the results. -->
| MLS | Voxpopuli | CV |
|----------- |--------- | ------- |
| 17.66 | 19.69 | 19.42
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
FBK-digis cluster
#### Hardware
device=device(type='cuda', index=0, CUDA Version: 12.5) GPU quadro RTX50000
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
G. A. Wright, U. Cappellazzo, S. Zaiem, D. Raj, L. O. Yang, D. Falavigna, M. N. Ali, and A. Brutti, “Training early-exit architectures for automatic speech recognition:
Fine-tuning pre-trained models or training from scratch,” in Proc. of ICASSP Workshops, 2024, pp. 685–689 (https://arxiv.org/abs/2309.09546)
Maxence Lasbordes, Daniele Falavigna, Alessio Brutti, “Splitformer: An improved early-exit architecture for automatic speech recognition on edge devices”,
Proc. of EUSIPCO 2025 (https://arxiv.org/abs/2506.18035)
Mohamed Nabih Ali, Alessio Brutti, Daniele Falavigna, Federating Dynamic Models using Early-Exit Architectures for Automatic Speech Recognition on Heterogeneous Clients.
To appear on "Progress in Artificial Intelligence" (https://arxiv.org/abs/2405.17376)
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |