Italian
File size: 6,152 Bytes
82cb7db
 
4987286
 
82cb7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42935e2
c2cb341
 
82cb7db
 
 
 
 
4987286
82cb7db
 
 
 
 
 
 
 
 
4987286
82cb7db
 
 
 
8eaab71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82cb7db
 
 
 
7b194cb
 
8eaab71
7b194cb
eba85bf
7b194cb
eba85bf
82cb7db
7b194cb
82cb7db
 
 
 
ff9a6a0
82cb7db
 
 
 
8eaab71
82cb7db
 
 
 
 
 
 
8eaab71
82cb7db
 
 
8eaab71
 
 
c02209a
8eaab71
 
82cb7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ee844
82cb7db
 
 
f7ee844
82cb7db
 
 
 
 
 
 
 
 
f7ee844
f10ddcf
f7ee844
f3bbe7e
 
 
f10ddcf
cd8044a
f10ddcf
 
82cb7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
license: cc-by-2.0
language:
- it
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).

## Model Details

The model has 31,536,128 trainable parameters

### Model Description

<!-- Provide a longer summary of what this model is. -->

Model trained using Early Exit architecture: 12 conformer layers, 6 CTC decoders. 
The model has been generated by averaging from epoch 16 to epoch 26. 
This model can handle only speech signals sampled at 16 kHz.

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

To be used for ASR: code for using the model available at https://github.com/SpeechTechLab/early-exit-transformer

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code at https://github.com/SpeechTechLab/early-exit-transformer.


## Training Details

decoder_mode='ctc', model_type='early_conformer', bpe=True

distill=False, language_model=None, language_model_dict=None, avg_model_start=0, avg_model_end=5

max_len=2000, d_model=256, n_enc_layers_per_exit=2, n_enc_exits=6, n_dec_layers=6, n_heads=8

d_feed_forward=2048, depthwise_kernel_size=31, max_utterance_length=600, sample_rate=16000

n_fft=512, win_length=320, hop_length=160, n_mels=80

src_pad_idx=0, trg_pad_idx=126, trg_sos_idx=1, trg_eos_idx=2, enc_voc_size=256, dec_voc_size=256

sp=<sentencepiece.SentencePieceProcessor=;'cv.bpe-256.model' lexicon='cv-bpe-256.lex', tokens='cv-bpe-256.tok')


### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

Common Voice (Italian) [~410h],

MultiLingual LibriSpeech (Italian) [~247h],

VoxPopuli (Italian) [~87h],

You Tube Commons (Italian) [~1580h]


### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

47 epochs on CV followed by  80 epochs on CV+MLS+Voxpopuli followed by 5 epochs on YPT+CV+MLS+Voxpopuli


#### Training Hyperparameters

shuffle=True, batch_size=64, n_batch_split=8, drop_prob=0.1, init_lr=1e-05, adam_eps=1e-09, weight_decay=0.0001, warmup=[trining dataset size], clip=1.0

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation (%WER)

<!-- This section describes the evaluation protocols and provides the results. -->


   | MLS         | Voxpopuli | CV      | 
   |-----------  |---------  | ------- |
   |  17.66      |   19.69   | 19.42     


### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

FBK-digis cluster

#### Hardware

device=device(type='cuda', index=0, CUDA Version: 12.5) GPU quadro RTX50000

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

G. A. Wright, U. Cappellazzo, S. Zaiem, D. Raj, L. O. Yang, D. Falavigna, M. N. Ali, and A. Brutti, “Training early-exit architectures for automatic speech recognition: 
Fine-tuning pre-trained models or training from scratch,” in Proc. of ICASSP Workshops, 2024, pp. 685–689 (https://arxiv.org/abs/2309.09546)

Maxence Lasbordes, Daniele Falavigna, Alessio Brutti, “Splitformer: An improved early-exit architecture for automatic speech recognition on edge devices”, 
Proc. of EUSIPCO 2025 (https://arxiv.org/abs/2506.18035)

Mohamed Nabih Ali, Alessio Brutti, Daniele Falavigna, Federating Dynamic Models using Early-Exit Architectures for Automatic Speech Recognition on Heterogeneous Clients. 
To appear on "Progress in Artificial Intelligence" (https://arxiv.org/abs/2405.17376)


**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]