Ziyi Lin commited on
Commit
b743710
·
1 Parent(s): a81d5c4

Upload materials part 1

Browse files
LICENSE ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Open Source License
2
+
3
+ The ten-vad is licensed pursuant to the Apache License v2.0, with the
4
+ following additional conditions. You may reproduce, prepare Derivative Works
5
+ of, publicly display, publicly perform, sublicense, distribute, or otherwise
6
+ make available (together, "Deploy") the ten-vad, for commercial or
7
+ non-commercial purposes, provided that you agree to abide by the terms below:
8
+
9
+ 1. You may not (i) host the ten-vad or the Derivative Works on any End
10
+ User devices, including but not limited to any mobile terminal devices
11
+ or (ii) Deploy the ten-vad in a way that competes with Agora's
12
+ offerings and/or that allows others to compete with Agora's offerings,
13
+ including without limitation enabling any third party to develop or
14
+ deploy Applications.
15
+
16
+ 2. You may Deploy the ten-vad solely to create and enable deployment
17
+ of your Application(s) solely for your benefit and the benefit of your
18
+ direct End Users. If you prefer, you may include the following notice in
19
+ the documentation of your Application(s): "Powered by ten-vad".
20
+
21
+ 3. Derivative Works of the ten-vad remain subject to this Open Source
22
+ License.
23
+
24
+ 4. "End Users" shall mean the end-users of your Application(s) who access
25
+ the ten-vad solely to the extent necessary to access and use the
26
+ Application(s) you create or deploy using ten-vad.
27
+
28
+ 5. "Application(s)" shall mean your software programs designed or developed
29
+ by using the ten-vad or where deployment is enabled by the ten-vad.
30
+
31
+ Copyright © 2025 Agora
32
+
33
+ Licensed under the Apache License, Version 2.0 (the "License");
34
+ you may not use this file except in compliance with the License.
35
+ You may obtain a copy of the License at
36
+
37
+ http://www.apache.org/licenses/LICENSE-2.0
38
+
39
+ Unless required by applicable law or agreed to in writing, software
40
+ distributed under the License is distributed on an "AS IS" BASIS,
41
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
42
+ See the License for the specific language governing permissions and
43
+ limitations under the License.
README.md CHANGED
@@ -1,3 +1,399 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # **TEN VAD**
2
+
3
+ ***A Low-Latency, Lightweight and High-Performance Streaming VAD***
4
+
5
+
6
+
7
+ ## **Introduction**
8
+ **TEN VAD** is a real-time voice activity detection system designed for enterprise use, providing accurate frame-level speech activity detection. It shows superior precision compared to both WebRTC VAD and Silero VAD, which are commonly used in the industry. Additionally, TEN VAD offers lower computational complexity and reduced memory usage compared to Silero VAD. Meanwhile, the architecture's temporal efficiency enables rapid voice activity detection, significantly reducing end-to-end response and turn detection latency in conversational AI systems.
9
+
10
+
11
+
12
+ ## **Key Features**
13
+
14
+ ### **1. High-Performance:**
15
+
16
+ The precision-recall curves comparing the performance of WebRTC VAD (pitch-based), Silero VAD, and TEN VAD are shown below. The evaluation is conducted on the precisely manually annotated TEN-VAD-TestSet. The audio files are from librispeech, gigaspeech, DNS Challenge etc. As demonstrated, TEN VAD achieves the best performance. Additionally, cross-validation experiments conducted on large internal real-world datasets demonstrate the reproducibility of these findings. The **TEN-VAD-TestSet with annotated labels** is released in directory "TEN-VAD-TestSet" of this repository.
17
+
18
+ <br>
19
+
20
+ <div style="text-align:">
21
+ <img src="./images/PR_Curves_TEN-VAD-TestSet.png" width="800">
22
+ </div>
23
+
24
+ Note that the default threshold of 0.5 is used to generate binary speech indicators (0 for non-speech signal, 1 for speech signal). This threshold needs to be tuned according to your domain-specific task. The precision-recall curve can be obtained by executing the following script on Linux x64. The output figure will be saved in the same directory as the script. Note that only PR curves of Silero VAD and TEN VAD are plotted, we did not plot the one of WebRTC VAD, which is used in the latese version of WebRTC.
25
+
26
+ ```
27
+ cd ./examples
28
+ python plot_pr_curves.py
29
+ ```
30
+ <br>
31
+
32
+ ### **2. Agent-Friendly:**
33
+ As illustrated in the figure below, TEN VAD rapidly detects speech-to-non-speech transitions, whereas Silero VAD suffers from a delay of several hundred milliseconds, resulting in increased end-to-end latency in human-agent interaction systems. In addition, as demonstrated in the 6.5s-7.0s audio segment, Silero VAD fails to identify short silent durations between adjacent speech segments.
34
+ <div style="text-align:">
35
+ <img src="./images/Agent-Friendly-image.png" width="800">
36
+ </div>
37
+ <br>
38
+
39
+ ### **3. Lightweight:**
40
+ We evaluated the RTF (Real-Time Factor) across five distinct platforms, each equipped with varying CPUs. TEN VAD demonstrates much lower computational complexity and smaller library size than Silero VAD.
41
+
42
+ <table>
43
+ <tr>
44
+ <th align="center" rowspan="2" valign="middle"> Platform </th>
45
+ <th align="center" rowspan="2" valign="middle"> CPU </th>
46
+ <th align="center" colspan="2"> RTF </th>
47
+ <th align="center" colspan="2"> Lib Size </th>
48
+ </tr>
49
+ <tr>
50
+ <th align="center" style="white-space: nowrap;"> TEN VAD </th>
51
+ <th align="center" style="white-space: nowrap;"> Silero VAD </th>
52
+ <th align="center"> TEN VAD </th>
53
+ <th align="center"> Silero VAD </th>
54
+ </tr>
55
+ <tr>
56
+ <th align="center" rowspan="3"> Linux </th>
57
+ <td style="white-space: nowrap;"> AMD Ryzen 9 5900X 12-Core </td>
58
+ <td align="center"> 0.0150 </td>
59
+ <td rowspan="2" style="text-align: center; vertical-align: middle;"> / </td>
60
+ <td rowspan="3" style="text-align: center; vertical-align: middle;"> 306KB </td>
61
+ <td rowspan="9" style="text-align: center; vertical-align: middle;"> 2.16MB(JIT) / 2.22MB(ONNX) </td>
62
+ </tr>
63
+ <tr>
64
+ <td style="white-space: nowrap;"> Intel(R) Xeon(R) Platinum 8253 </td>
65
+ <td align="center"> 0.0136 </td>
66
+ </tr>
67
+ <tr>
68
+ <td style="white-space: nowrap;"> Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz </td>
69
+ <td align="center"> 0.0086 </td>
70
+ <td align="center"> 0.0127 </td>
71
+ </tr>
72
+ <tr>
73
+ <th align="center"> Windows </th>
74
+ <td> Intel i7-10710U </td>
75
+ <td align="center"> 0.0150 </td>
76
+ <td rowspan="6" style="text-align: center; vertical-align: middle;"> / </td>
77
+ <td align="center" style="white-space: nowrap;"> 464KB(x86) / 508KB(x64) </td>
78
+ </tr>
79
+ <tr>
80
+ <th align="center"> macOS </th>
81
+ <td> M1 </td>
82
+ <td align="center"> 0.0160 </td>
83
+ <td align="center"> 731KB </td>
84
+ </tr>
85
+ <tr>
86
+ <th align="center" rowspan="2"> Android </th>
87
+ <td> Galaxy J6+ (32bit, 425) </td>
88
+ <td align="center"> 0.0570 </td>
89
+ <td rowspan="2" style="white-space: nowrap;" style="text-align: center; vertical-align: middle;"> 373KB(v7a) / 532KB(v8a)</td>
90
+ </tr>
91
+ <tr>
92
+ <td> Oppo A3s (450) </td>
93
+ <td align="center"> 0.0490 </td>
94
+ </tr>
95
+ <tr>
96
+ <th align="center" rowspan="2"> iOS </th>
97
+ <td> iPhone6 (A8) </td>
98
+ <td align="center"> 0.0210 </td>
99
+ <td rowspan="2" style="text-align: center; vertical-align: middle;"> 320KB</td>
100
+ </tr>
101
+ <tr>
102
+ <td> iPhone8 (A11) </td>
103
+ <td align="center"> 0.0050 </td>
104
+ </tr>
105
+ </table>
106
+
107
+ <style>
108
+ th, td {
109
+ border: 1px solid #ddd;
110
+ padding: 8px;
111
+ }
112
+ </style>
113
+ <br>
114
+
115
+ ### **4. Multiple programming languages and platforms:**
116
+ TEN VAD provides cross-platform C compatibility across five operating systems (Linux x64, Windows, macOS, Android, iOS), with Python bindings optimized for Linux x64.
117
+ <br>
118
+ <br>
119
+
120
+
121
+ ### **5. Supproted sampling rate and hop size:**
122
+ TEN VAD operates on 16kHz audio input with configurable hop sizes (optimized frame configurations: 160/256 samples=10/16ms). Other sampling rates must be resampled to 16kHz.
123
+ <br>
124
+ <br>
125
+
126
+ ## **Installation**
127
+ ```
128
+ git clone https://huggingface.co/TEN-framework/ten-vad
129
+ ```
130
+ <br>
131
+
132
+ ## **Quick Start**
133
+ The project supports five major platforms with dynamic library linking.
134
+ <table>
135
+ <tr>
136
+ <th align="center"> Platform </th>
137
+ <th align="center"> Dynamic Lib </th>
138
+ <th align="center"> Supported Arch </th>
139
+ <th align="center"> Interface Language </th>
140
+ <th align="center"> Header </th>
141
+ <th align="center"> Comment </v>
142
+ </tr>
143
+ <tr>
144
+ <th align="center"> Linux </th>
145
+ <td align="center"> libten_vad.so </td>
146
+ <td align="center"> x64 </td>
147
+ <td align="center"> Python, C </td>
148
+ <td rowspan="5" style="text-align: center; vertical-align: middle;">ten_vad.h <br> ten_vad.py</td>
149
+ <td> </td>
150
+ </tr>
151
+ <tr>
152
+ <th align="center"> Windows </th>
153
+ <td align="center"> ten_vad.dll </td>
154
+ <td align="center"> x64, x86 </td>
155
+ <td align="center"> C </td>
156
+ <td> </td>
157
+ </tr>
158
+ <tr>
159
+ <th align="center"> macOS </th>
160
+ <td align="center"> ten_vad.framework </td>
161
+ <td align="center"> arm64, x86_64 </td>
162
+ <td align="center"> C </td>
163
+ <td> </td>
164
+ </tr>
165
+ <tr>
166
+ <th align="center"> Android </th>
167
+ <td align="center"> libten_vad.so </td>
168
+ <td align="center"> arm64-v8a, armeabi-v7a </td>
169
+ <td align="center"> C </td>
170
+ <td> </td>
171
+ </tr>
172
+ <tr>
173
+ <th align="center"> iOS </th>
174
+ <td align="center" style="text-align: center; vertical-align: middle;"> ten_vad.framework </td>
175
+ <td align="center" style="text-align: center; vertical-align: middle;"> arm64 </td>
176
+ <td align="center"> C </td>
177
+ <td> 1. not simulator <br> 2. not iPad </td>
178
+ </tr>
179
+ </table>
180
+ <br>
181
+
182
+
183
+ ### **Python Usage**
184
+ #### **1. Linux**
185
+ #### **Requirements**
186
+ - numpy (Version 1.17.4/1.26.4 verified)
187
+ - scipy (Version 1.4.1/1.13.1 verified)
188
+ - scikit-learn (Version 1.2.2/1.5.0 verified, for plotting PR curves)
189
+ - matplotlib (Version 3.1.3/3.10.0 verified, for plotting PR curves)
190
+ - torchaudio (Version 2.2.2 verified, for plotting PR curves)
191
+
192
+ - Python version 3.8.19/3.10.14 verified
193
+
194
+ Note: You could use other versions of above packages, but we didn't test other versions.
195
+
196
+ You can install the above mentioned dependencies via requirements.txt:
197
+
198
+ ```
199
+ pip install -r requirements.txt
200
+ ```
201
+ <br>
202
+
203
+ #### **Usage**
204
+ Note: For usage in python, you can either use it by **git clone** or **pip**.
205
+
206
+ ##### **By using git clone:**
207
+
208
+ 1. Clone the repository
209
+ ```
210
+ git clone https://huggingface.co/TEN-framework/ten-vad
211
+ ```
212
+
213
+ 2. Enter examples directory
214
+ ```
215
+ cd ./examples
216
+ ```
217
+
218
+ 3. Test
219
+ ```
220
+ python test.py s0724-s0730.wav out.txt
221
+ ```
222
+ <br>
223
+
224
+ ##### **By using pip:**
225
+
226
+ 1. Install via pip
227
+
228
+ ```
229
+ pip install -U --force-reinstall -v git+https://huggingface.co/TEN-framework/ten-vad
230
+ ```
231
+
232
+ 2. Write your own use cases and import the class, the attributes of class TenVAD you can refer to ten_vad.py
233
+
234
+ ```
235
+ from ten_vad import TenVad
236
+ ```
237
+ <br>
238
+
239
+ ### **C Usage**
240
+ #### **Build Scripts**
241
+ Located in examples/ directory:
242
+
243
+ - Linux: build-and-deploy-linux.sh
244
+ - Windows: build-and-deploy-windows.bat
245
+ - macOS: build-and-deploy-mac.sh
246
+ - Android: build-and-deploy-android.sh
247
+ - iOS: build-and-deploy-ios.sh
248
+
249
+ #### **Dynamic Library Configuration**
250
+ Runtime library path configuration:
251
+ - Linux/Android: LD_LIBRARY_PATH
252
+ - macOS: DYLD_FRAMEWORK_PATH
253
+ - Windows: DLL in executable directory or system PATH
254
+
255
+ #### **Customization**
256
+ - Modify platform-specific build scripts
257
+ - Adjust CMakeLists.txt
258
+ - Configure toolchain and architecture settings
259
+
260
+ #### **Overview of Usage**
261
+ - Navigate to examples/
262
+ - Execute platform-specific build script
263
+ - Configure dynamic library path
264
+ - Run demo with sample audio s0724-s0730.wav
265
+ - Processed results saved to out.txt
266
+
267
+ <br>
268
+
269
+ The detailed usage methods of each platform are as follows <br>
270
+
271
+ #### **1. Linux**
272
+ ##### **Requirements**
273
+ - Clang (e.g. 6.0.0-1ubuntu2 verified)
274
+ - CMake
275
+ - Terminal
276
+
277
+ ##### **Usage**
278
+ ```
279
+ 1) cd ./examples
280
+ 2) ./build-and-deploy-linux.sh
281
+ ```
282
+ <br>
283
+
284
+ #### **2. Windows**
285
+ ##### **Requirements**
286
+ - Visual Studio (2017, 2019, 2022 verified)
287
+ - CMake (3.26.0-rc6 verified)
288
+ - Terminal (MINGW64 or powershell)
289
+
290
+ ##### **Usage**
291
+ ```
292
+ 1) cd ./examples
293
+ 2) Configure "build-and-deploy-windows.bat" with your preferred:
294
+ - Architecture (default: x64)
295
+ - Visual Studio version (default: 2019)
296
+ 3) ./build-and-deploy-windows.bat
297
+ ```
298
+ <br>
299
+
300
+ #### **3. macOS**
301
+ ##### **Requirements**
302
+ - Xcode (15.2 verified)
303
+ - CMake (3.19.2 verified)
304
+
305
+ ##### **Usage**
306
+ ```
307
+ 1) cd ./examples
308
+ 2) Configure "build-and-deploy-mac.sh" with your target architecture:
309
+ - Default: arm64 (Apple Silicon)
310
+ - Alternative: x86_64 (Intel)
311
+ 3) ./build-and-deploy-mac.sh
312
+ ```
313
+ <br>
314
+
315
+ #### **4. Android**
316
+ ##### **Requirements**
317
+ - NDK (r25b, macOS verified)
318
+ - CMake (3.19.2, macOS verified)
319
+ - adb (1.0.41, macOS verified)
320
+
321
+ ##### **Usage**
322
+ ```
323
+ 1) cd ./examples
324
+ 2) export ANDROID_NDK=/path/to/android-ndk # Replace it with your NDK installation path
325
+ 3) Configure "build-and-deploy-android.sh" with your build settings:
326
+ - Architecture: arm64-v8a (default) or armeabi-v7a
327
+ - Toolchain: aarch64-linux-android-clang (default) or custom NDK toolchain
328
+ 4) ./build-and-deploy-android.sh
329
+ ```
330
+ <br>
331
+
332
+ #### **5. iOS**
333
+ ##### **Requirements**
334
+ Xcode (15.2, macOS verified)
335
+ CMake (3.19.2, macOS verified)
336
+ ##### **Usage**
337
+ 1. Enter examples directory
338
+ ```
339
+ cd ./examples
340
+ ```
341
+
342
+ 2. Creates Xcode project files for iOS build
343
+ ```
344
+ ./build-and-deploy-ios.sh
345
+ ```
346
+
347
+ 3. Follow the steps below to build and test on iOS device:
348
+
349
+ 3.1. Use Xcode to open .xcodeproj files: a) cd ./build-ios, b) open ./ten_vad_demo.xcodeproj
350
+
351
+ 3.2. In Xcode IDE, select ten_vad_demo target (should check: Edit Scheme → Run → Release), then select your iOS Device (not simulator).
352
+
353
+ <div style="text-align:">
354
+ <img src="./images/ios_image_1.jpg" width="800">
355
+ </div>
356
+
357
+ 3.3. Drag ten_vad/lib/iOS/ten_vad.framework to "Frameworks, Libraries, and Embedded Content"
358
+
359
+ - (in TARGETS → ten_vad_demo → ten_vad_demo → General, should set Embed to "Embed & Sign").
360
+
361
+ - or add it directly in this way: "Frameworks, Libraries, and Embedded Content" → "+" → Add Other... → Add Files →...
362
+
363
+ - Note: If this step is not completed, you may encounter the following runtime error: "dyld: Library not loaded: @rpath/ten_vad.framework/ten_vad".
364
+
365
+ <div style="text-align:">
366
+ <img src="./images/ios_image_2.png" width="800">
367
+ </div>
368
+
369
+ 3.4. Configure iOS device Signature
370
+
371
+ - in TARGETS → ten_vad_demo → Signing & Capabilities → Signing
372
+
373
+ - Modify Bundle Identifier: modify "com.yourcompany" to yours;
374
+
375
+ - Specify Provisioning Profile
376
+
377
+ - In TARGETS → ten_vad_demo → Build Settings → Signing → Code Signing Identity:
378
+ - Specify your Certification
379
+
380
+ 3.5. Build in Xcode and run demo on your device.
381
+ <br>
382
+
383
+ ## **Citations**
384
+ ```
385
+ @misc{TEN VAD,
386
+ author = {TEN Team},
387
+ title = {TEN VAD: A Low-Latency, Lightweight and High-Performance Streaming Voice Activity Detector (VAD)},
388
+ year = {2025},
389
+ publisher = {GitHub},
390
+ journal = {GitHub repository},
391
+ howpublished = {https://github.com/TEN-framework/ten-vad.git},
392
+ commit = {insert_some_commit_here},
393
+ email = {TODO}
394
+ }
395
+ ```
396
+ <br>
397
+
398
+ ## **License**
399
+ This project is Apache 2.0 licensed.
include/__pycache__/ten_vad.cpython-310.pyc ADDED
Binary file (2.62 kB). View file
 
include/ten_vad.h ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ //
2
+ // This file is part of TEN Framework, an open source project.
3
+ // Licensed under the Apache License, Version 2.0.
4
+ // See the LICENSE file for more information.
5
+ //
6
+ #ifndef TEN_VAD_H
7
+ #define TEN_VAD_H
8
+
9
+ #if defined(__APPLE__) || defined(__ANDROID__) || defined(__linux__)
10
+ #define TENVAD_API __attribute__((visibility("default")))
11
+ #elif defined(_WIN32) || defined(__CYGWIN__)
12
+ #ifdef TENVAD_EXPORTS
13
+ #define TENVAD_API __declspec(dllexport)
14
+ #else
15
+ #define TENVAD_API __declspec(dllimport)
16
+ #endif
17
+ #else
18
+ #define TENVAD_API
19
+ #endif
20
+
21
+ #include <stddef.h> /* size_t */
22
+ #include <stdint.h> /* int16_t */
23
+
24
+ #ifdef __cplusplus
25
+ extern "C"
26
+ {
27
+ #endif
28
+
29
+ /**
30
+ * @typedef ten_vad_handle
31
+ * @brief Opaque handle for ten_vad instance.
32
+ */
33
+ typedef void *ten_vad_handle_t;
34
+
35
+ /**
36
+ * @brief Create and initialize a ten_vad instance.
37
+ *
38
+ * @param[out] handle Pointer to receive the vad handle.
39
+ * @param[in] hop_size The number of samples between the start points of
40
+ * two consecutive analysis frames. (e.g., 256).
41
+ * @param[in] threshold VAD detection threshold ranging from [0.0, 1.0]
42
+ * (default: 0.5).
43
+ * @return 0 on success, or -1 error occurs.
44
+ */
45
+ TENVAD_API int ten_vad_create(ten_vad_handle_t *handle, size_t hop_size,
46
+ float threshold);
47
+
48
+ /**
49
+ * @brief Process one audio frame for voice activity detection.
50
+ * Must call ten_vad_init() before calling this, and ten_vad_destroy() when done.
51
+ *
52
+ * @param[in] handle Valid VAD handle returned by ten_vad_create().
53
+ * @param[in] audio_data Pointer to an array of int16_t samples,
54
+ * buffer length must equal the hop size specified at ten_vad_create.
55
+ * @param[in] audio_data_length size of audio_data buffer, here should be equal to hop_size.
56
+ * @param[out] out_probability Pointer to a float (size 1) that receives the
57
+ * voice activity probability in the range [0.0, 1.0].
58
+ * @param[out] out_flag Pointer to an int (size 1) that receives the
59
+ * detection result: 0 = no voice, 1 = voice detected.
60
+ * @return 0 on success, or -1 error occurs.
61
+ */
62
+ TENVAD_API int ten_vad_process(ten_vad_handle_t handle, const int16_t *audio_data, size_t audio_data_length,
63
+ float *out_probability, int *out_flag);
64
+
65
+ /**
66
+ * @brief Destroy a ten_vad instance and release its resources.
67
+ *
68
+ * @param[in,out] handle Pointer to the ten_vad handle; set to NULL on return.
69
+ * @return 0 on success, or -1 error occurs.
70
+ */
71
+ TENVAD_API int ten_vad_destroy(ten_vad_handle_t *handle);
72
+
73
+ /**
74
+ * @brief Get the ten_vad library version string.
75
+ *
76
+ * @return The version string (e.g., "1.0.0").
77
+ */
78
+ TENVAD_API const char *ten_vad_get_version(void);
79
+
80
+ #ifdef __cplusplus
81
+ }
82
+ #endif
83
+
84
+ #endif /* TEN_VAD_H */
include/ten_vad.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # This file is part of TEN Framework, an open source project.
3
+ # Licensed under the Apache License, Version 2.0.
4
+ # See the LICENSE file for more information.
5
+ #
6
+ from ctypes import c_int, c_int32, c_float, c_size_t, CDLL, c_void_p, POINTER
7
+ import numpy as np
8
+ import os
9
+
10
+ class TenVad:
11
+ def __init__(self, hop_size: int = 256, threshold: float = 0.5):
12
+ self.hop_size = hop_size
13
+ self.threshold = threshold
14
+ if os.path.exists(
15
+ os.path.join(
16
+ os.path.dirname(os.path.relpath(__file__)),
17
+ "../lib/Linux/x64/libten_vad.so",
18
+ )
19
+ ):
20
+ self.vad_library = CDLL(
21
+ os.path.join(
22
+ os.path.dirname(os.path.relpath(__file__)),
23
+ "../lib/Linux/x64/libten_vad.so",
24
+ )
25
+ )
26
+ else:
27
+ self.vad_library = CDLL(
28
+ os.path.join(
29
+ os.path.dirname(
30
+ os.path.relpath(__file__)),
31
+ "./ten_vad_library/libten_vad.so",
32
+ )
33
+ )
34
+ self.vad_handler = c_void_p(0)
35
+ self.out_probability = c_float()
36
+ self.out_flags = c_int32()
37
+
38
+ self.vad_library.ten_vad_create.argtypes = [
39
+ POINTER(c_void_p),
40
+ c_size_t,
41
+ c_float,
42
+ ]
43
+ self.vad_library.ten_vad_create.restype = c_int
44
+
45
+ self.vad_library.ten_vad_destroy.argtypes = [POINTER(c_void_p)]
46
+ self.vad_library.ten_vad_destroy.restype = c_int
47
+
48
+ self.vad_library.ten_vad_process.argtypes = [
49
+ c_void_p,
50
+ c_void_p,
51
+ c_size_t,
52
+ POINTER(c_float),
53
+ POINTER(c_int32),
54
+ ]
55
+ self.vad_library.ten_vad_process.restype = c_int
56
+ self.create_and_init_handler()
57
+
58
+ def create_and_init_handler(self):
59
+ assert (
60
+ self.vad_library.ten_vad_create(
61
+ POINTER(c_void_p)(self.vad_handler),
62
+ c_size_t(self.hop_size),
63
+ c_float(self.threshold),
64
+ )
65
+ == 0
66
+ ), "[TEN VAD]: create handler failure!"
67
+
68
+ def __del__(self):
69
+ assert (
70
+ self.vad_library.ten_vad_destroy(
71
+ POINTER(c_void_p)(self.vad_handler)
72
+ )
73
+ == 0
74
+ ), "[TEN VAD]: destroy handler failure!"
75
+
76
+ def get_input_data(self, audio_data: np.ndarray):
77
+ audio_data = np.squeeze(audio_data)
78
+ assert (
79
+ len(audio_data.shape) == 1
80
+ and audio_data.shape[0] == self.hop_size
81
+ ), "[TEN VAD]: audio data shape should be [%d]" % (
82
+ self.hop_size
83
+ )
84
+ assert (
85
+ type(audio_data[0]) == np.int16
86
+ ), "[TEN VAD]: audio data type error, must be int16"
87
+ data_pointer = audio_data.__array_interface__["data"][0]
88
+ return c_void_p(data_pointer)
89
+
90
+ def process(self, audio_data: np.ndarray):
91
+ input_pointer = self.get_input_data(audio_data)
92
+ self.vad_library.ten_vad_process(
93
+ self.vad_handler,
94
+ input_pointer,
95
+ c_size_t(self.hop_size),
96
+ POINTER(c_float)(self.out_probability),
97
+ POINTER(c_int32)(self.out_flags),
98
+ )
99
+ return self.out_probability.value, self.out_flags.value
100
+
101
+
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ numpy
2
+ scipy
3
+ scikit-learn
4
+ matplotlib
5
+ torchaudio
setup.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from setuptools import setup
2
+ import os, shutil
3
+ from setuptools.command.install import install
4
+
5
+ class custom_install_command(install):
6
+ def run(self):
7
+ install.run(self)
8
+ target_dir = os.path.join(self.install_lib, "ten_vad_library")
9
+ os.makedirs(target_dir, exist_ok=True)
10
+ shutil.copy("lib/Linux/x64/libten_vad.so", target_dir)
11
+ print(f"Files installed to: {target_dir}")
12
+
13
+ root_dir = os.path.dirname(os.path.abspath(__file__))
14
+ shutil.copy(f"{root_dir}/include/ten_vad.py", f"{root_dir}/ten_vad.py")
15
+ setup(
16
+ name="ten_vad",
17
+ version="1.0",
18
+ py_modules=["ten_vad"],
19
+ cmdclass={
20
+ "install": custom_install_command,
21
+ },
22
+ )
23
+ os.remove(f"{root_dir}/ten_vad.py")