Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,69 @@
|
|
| 1 |
-
---
|
| 2 |
-
license:
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama2
|
| 3 |
+
datasets:
|
| 4 |
+
- ACE05
|
| 5 |
+
- conll2003
|
| 6 |
+
- conll2012_ontonotesv5
|
| 7 |
+
- rams
|
| 8 |
+
- tacred
|
| 9 |
+
- fewrel
|
| 10 |
+
- maven
|
| 11 |
+
language:
|
| 12 |
+
- en
|
| 13 |
+
metrics:
|
| 14 |
+
- f1
|
| 15 |
+
pipeline_tag: text-generation
|
| 16 |
+
tags:
|
| 17 |
+
- text-generation-inference
|
| 18 |
+
- Information Extraction
|
| 19 |
+
- IE
|
| 20 |
+
- Named Entity Recogniton
|
| 21 |
+
- Event Extraction
|
| 22 |
+
- Relation Extraction
|
| 23 |
+
- LLaMA
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
# Model Card for ADELIE-DPO-3B
|
| 27 |
+
|
| 28 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 29 |
+
|
| 30 |
+
<p align="justify">
|
| 31 |
+
We introduce <b>ADELIE</b> (<b>A</b>ligning large language mo<b>DEL</b>s on <b>I</b>nformation <b>E</b>xtraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus <font face="Verdana">IEInstruct</font> for IE. Then we train ADELIE<sub>SFT</sub> using instruction tuning on <font face="Verdana">IEInstruct</font>. We further train ADELIE<sub>SFT</sub> with direct preference optimization (DPO) objective, resulting in ADELIE<sub>DPO</sub>. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE<sub>SFT</sub> and ADELIE<sub>DPO</sub>) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline.
|
| 32 |
+
|
| 33 |
+
- 📖 Paper: [ADELIE: Aligning Large Language Models on Information Extraction](https://arxiv.org/abs/2405.05008)
|
| 34 |
+
</p>
|
| 35 |
+
- 🐧 Github: [THU/ADELIE](https://github.com/THU-KEG/ADELIE/tree/main)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Model Performance
|
| 39 |
+
|
| 40 |
+
The table below presents the average F1 scores (%) of the ADELIE model across closed IE, open IE, and on-demand IE tasks, as well as its overall performance (%) on general benchmarks. For dataset details, please refer to the paper.
|
| 41 |
+
|
| 42 |
+
| Model | Closed IE | Open IE | On-demand IE | General Average Score |
|
| 43 |
+
|-----------------|-----------|---------|--------------|-----------------------|
|
| 44 |
+
| Llama2 7B | 5.7 | 5.6 | 22.4 | 52.2 |
|
| 45 |
+
| ADELIE-SFT | 42.6 | 46.9 | 60.4 | 53.5 |
|
| 46 |
+
| ADELIE-DPO | **42.7** | **47.6** | **60.5** | **53.8** |
|
| 47 |
+
|-----------------|-----------|---------|--------------|-----------------------|
|
| 48 |
+
| Llama3.2 3B | 19.1 | 18.5 | 20.8 | 55.5 |
|
| 49 |
+
| ADELIE-SFT-3B | **41.8** | 47.6 | **60.8** | **55.6** |
|
| 50 |
+
| ADELIE-DPO-3B | 39.2 | **47.8** | 60.7 | **55.6** |
|
| 51 |
+
|-----------------|-----------|---------|--------------|-----------------------|
|
| 52 |
+
| Qwen2.5 1.5B | 16.5 | 14.2 | 20.5 | 54.6 |
|
| 53 |
+
| ADELIE-SFT-1.5B | 37.7 | 44.6 | 58.9 | 55.0 |
|
| 54 |
+
| ADELIE-DPO-1.5B | **38.5** | **45.6** | **59.2** | **55.1** |
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
### Model Description
|
| 59 |
+
|
| 60 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
- **Developed by:** Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
|
| 65 |
+
- **Model type:** Text Generation
|
| 66 |
+
- **Language(s) (NLP):** English
|
| 67 |
+
- **License:** LLaMA2 License for the base model.
|
| 68 |
+
- **Finetuned from model [optional]:** LLaMA3.2-3B
|
| 69 |
+
|