--- pipeline_tag: robotics tags: - lerobot library_name: lerobot datasets: - TekbotRobotics/svla_so101_pickplace_flags_sorting --- ## SmolVLA: A vision-language-action model for affordable and efficient robotics Resources and technical documentation: [Train using Google Colab Notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/lerobot/training-smolvla.ipynb#scrollTo=ZO52lcQtxseE) [SmolVLA HF Documentation](https://huggingface.co/docs/lerobot/smolvla) Designed by Tekbot Robotics and Inspired from Hugging Face. This model was finetuned on [hugging Face base model](https://huggingface.co/lerobot/smolvla_base/). Before proceeding to the next steps, you need to properly install the environment by following [Installation Guide](https://huggingface.co/docs/lerobot/installation) on the docs. Install smolvla extra dependencies: ```bash pip install -e ".[smolvla]" ``` Example of finetuning the smolvla pretrained model (`smolvla_base`): ```bash python lerobot/scripts/train.py \ --policy.path=lerobot/smolvla_base \ --dataset.repo_id=TekbotRobotics/svla_so101_pickplace_flags_sorting \ --batch_size=8 \ --steps=2000 \ --output_dir=outputs/train/my_smolvla \ --job_name=my_smolvla_training \ --policy.device=cuda \ --wandb.enable=true ```