Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama3.2
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- zh
|
| 6 |
+
base_model:
|
| 7 |
+
- meta-llama/Llama-3.2-3B
|
| 8 |
+
- lianghsun/Llama-3.2-3B-F1-Base
|
| 9 |
+
library_name: transformers
|
| 10 |
+
tags:
|
| 11 |
+
- Taiwan
|
| 12 |
+
- R.O.C
|
| 13 |
+
- zhtw
|
| 14 |
+
- SLM
|
| 15 |
+
- Llama-32
|
| 16 |
+
datasets:
|
| 17 |
+
- lianghsun/tw-reasoning-instruct
|
| 18 |
+
- minyichen/tw-instruct-R1-200k
|
| 19 |
+
- minyichen/tw_mm_R1
|
| 20 |
+
model-index:
|
| 21 |
+
- name: Llama-3.2-3B-F1-Reasoning-Instruct
|
| 22 |
+
results:
|
| 23 |
+
- task:
|
| 24 |
+
type: question-answering
|
| 25 |
+
name: Single Choice Question
|
| 26 |
+
dataset:
|
| 27 |
+
type: ikala/tmmluplus
|
| 28 |
+
name: tmmlu+
|
| 29 |
+
config: all
|
| 30 |
+
split: test
|
| 31 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 32 |
+
metrics:
|
| 33 |
+
- name: single choice
|
| 34 |
+
type: accuracy
|
| 35 |
+
value: 46.16
|
| 36 |
+
- task:
|
| 37 |
+
type: question-answering
|
| 38 |
+
name: Single Choice Question
|
| 39 |
+
dataset:
|
| 40 |
+
type: cais/mmlu
|
| 41 |
+
name: mmlu
|
| 42 |
+
config: all
|
| 43 |
+
split: test
|
| 44 |
+
revision: c30699e
|
| 45 |
+
metrics:
|
| 46 |
+
- name: single choice
|
| 47 |
+
type: accuracy
|
| 48 |
+
value: 51.22
|
| 49 |
+
- task:
|
| 50 |
+
type: question-answering
|
| 51 |
+
name: Single Choice Question
|
| 52 |
+
dataset:
|
| 53 |
+
type: lianghsun/tw-legal-benchmark-v1
|
| 54 |
+
name: tw-legal-benchmark-v1
|
| 55 |
+
config: all
|
| 56 |
+
split: test
|
| 57 |
+
revision: 66c3a5f
|
| 58 |
+
metrics:
|
| 59 |
+
- name: single choice
|
| 60 |
+
type: accuracy
|
| 61 |
+
value: 34.92
|
| 62 |
+
metrics:
|
| 63 |
+
- accuracy
|
| 64 |
+
---
|
| 65 |
+
|
| 66 |
+
# Model Card for Llama-3.2-3B-F1-Reasoning-Instruct (a.k.a __Formosa-1-Reasoning__ or __F1-Reasoning__)
|
| 67 |
+
|
| 68 |
+
<div align="center" style="line-height: 1;">
|
| 69 |
+
<a href="https://discord.gg/Cx737yw4ed" target="_blank" style="margin: 2px;">
|
| 70 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-Twinkle%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
| 71 |
+
</a>
|
| 72 |
+
<a href="https://huggingface.co/twinkle-ai" target="_blank" style="margin: 2px;">
|
| 73 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Twinkle%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 74 |
+
</a>
|
| 75 |
+
</div>
|
| 76 |
+
|
| 77 |
+
<div align="center" style="line-height: 1;">
|
| 78 |
+
<a href="https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt" style="margin: 2px;">
|
| 79 |
+
<img alt="License" src="https://img.shields.io/badge/License-llama3.2-f5de53?&color=0081fb" style="display: inline-block; vertical-align: middle;"/>
|
| 80 |
+
</a>
|
| 81 |
+
</div>
|
| 82 |
+
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 86 |
+
**Llama-3.2-3B-F1-Reasoning-Instruct**(a.k.a **Formosa-1-Reasoning** or **F1-Reasoning**) 是由 **[Twinkle AI](https://huggingface.co/twinkle-ai)** 與 **[APMIC](https://www.apmic.ai/)** 合作開發,並在[國家高速網路與計算中心](https://www.nchc.org.tw/)技術指導之下,針對中華民國台灣語境與任務需求所微調之繁體中文語言模型,涵蓋法律、教育、生活應用等多元場景,並以高指令跟隨能力為目標進行強化。
|
| 87 |
+
|
| 88 |
+
## Model Details
|
| 89 |
+
|
| 90 |
+
### Model Description
|
| 91 |
+
|
| 92 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 93 |
+
|
| 94 |
+
- **Developed by:** [Liang Hsun Huang](https://huggingface.co/lianghsun)、[Min Yi Chen](https://huggingface.co/minyichen)、[Wen Bin Lin](https://huggingface.co/tedslin)、[Chao Chun Chuang](https://huggingface.co/c00cjz00) & [Dave Sung](https://huggingface.co/k1dave6412) (All authors have contributed equally to this work.)
|
| 95 |
+
- **Funded by:** [APMIC](https://www.apmic.ai/)
|
| 96 |
+
- **Model type:** LlamaForCausalLM
|
| 97 |
+
- **Language(s) (NLP):** Tranditional Chinese & English
|
| 98 |
+
- **License:** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt)
|
| 99 |
+
|
| 100 |
+
### Model Sources
|
| 101 |
+
<!-- Provide the basic links for the model. -->
|
| 102 |
+
|
| 103 |
+
- **Repository:** [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct)
|
| 104 |
+
- **Paper:** (TBA)
|
| 105 |
+
- **Demo:** [Playground](https://3b02.coolify.apmic.ai/)
|
| 106 |
+
|
| 107 |
+
## Evaluation
|
| 108 |
+
|
| 109 |
+
### Results
|
| 110 |
+
|
| 111 |
+
下表採用 [🌟 Twinkle Eval](https://github.com/ai-twinkle/Eval) 評測框架
|
| 112 |
+
| 模型 | 評測模式 | TMMLU+(%) | 台灣法律(%) | MMLU(%) | 測試次數 | 選項排序 |
|
| 113 |
+
|------------------------------------|---------|----------------|----------------|----------------|---------|---------|
|
| 114 |
+
| [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) | box | 56.15 (±0.0172) | 37.48 (±0.0098) | 74.61 (±0.0154) | 3 | 隨機 |
|
| 115 |
+
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | box | 15.49 (±0.0104) | 25.68 (±0.0200) | 6.90 (±0.0096) | 3 | 隨機 |
|
| 116 |
+
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | pattern | 35.85 (±0.0174) | 32.22 (±0.0023) | 59.33 (±0.0168) | 3 | 隨機 |
|
| 117 |
+
| [MediaTek-Research/Llama-Breeze2-3B-Instruct](https://huggingface.co/MediaTek-Research/Llama-Breeze2-3B-Instruct) | pattern | 40.32 (±0.0181) | 38.92 (±0.0193) | 55.37 (±0.0180) | 3 | 隨機 |
|
| 118 |
+
| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours) | box | 46.16 (±0.0198) | 34.92 (±0.0243) | 51.22 (±0.0206) | 3 | 隨機 |
|
| 119 |
+
|
| 120 |
+
下表用 lighteval 評測框架
|
| 121 |
+
| 模型 | MATH-500 | GPQA Diamond |
|
| 122 |
+
|--------------------------------------------|----------|--------------|
|
| 123 |
+
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | 44.40 | 27.78 |
|
| 124 |
+
| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours) | **51.40**| **33.84** |
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
---
|
| 128 |
+
|
| 129 |
+
## 🔧 Tool Calling
|
| 130 |
+
|
| 131 |
+
本模型使用 Hermes 格式訓練,並支援平行呼叫(Parallel calling),以下為完整範例流程。
|
| 132 |
+
Tool call 模板已經為大家寫好放進 chat-template 了,Enjoy it!
|
| 133 |
+
|
| 134 |
+
### 1️⃣ 啟動 vLLM 後端
|
| 135 |
+
> **⚠️ 注意:需要 vLLM 版本 >= 0.8.3,否則 `enable-reasoning`、`enable-auto-tool-choice` 無法同時開啟**
|
| 136 |
+
|
| 137 |
+
```bash
|
| 138 |
+
vllm serve twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct \
|
| 139 |
+
--port 8001 \
|
| 140 |
+
--enable-reasoning \
|
| 141 |
+
--reasoning-parser deepseek_r1 \
|
| 142 |
+
--enable-auto-tool-choice \
|
| 143 |
+
--tool-call-parser hermes
|
| 144 |
+
```
|
| 145 |
+
|
| 146 |
+
### 2️⃣ 定義工具(Functions)
|
| 147 |
+
|
| 148 |
+
```python
|
| 149 |
+
def get_weather(location: str, unit: str):
|
| 150 |
+
return f"{location}的氣溫是{unit}26度,晴朗無風"
|
| 151 |
+
|
| 152 |
+
def search(query: str):
|
| 153 |
+
return "川普終於宣布對等關稅政策,針對 18 個經濟體課徵一半的對等關稅,並從 4/5 起對所有進口產品徵收10%的基準關稅!美國將針對被認定為不當貿易行為(不公平貿易) 的國家,於 4/9 起課徵報復型對等關稅 (Discounted Reciprocal Tariff),例如:日本將被課徵 24% 的關稅,歐盟則為 20%,以取代普遍性的 10% 關稅。\n針對中國則開啟新一波 34% 關稅,並疊加於先前已實施的關稅上,這將使中國進口商品的基本關稅稅率達到 54%,而且這尚未包含拜登總統任內或川普第一任期所施加的額外關稅。加拿大與墨西哥則不適用這套對等關稅制度,但川普認為這些國家在芬太尼危機與非法移民問題尚未完全解決,因此計畫對這兩國的大多數進口商品施加 25% 關稅。另外原本針對汽車與多數其他商品的關稅豁免將於 4/2 到期。\n台灣的部分,美國擬向台灣課徵32%的對等關稅,雖然並未針對晶片特別課徵關稅,但仍在記者會中提到台灣搶奪所有的電腦與半導體晶片,最終促成台積電對美國投資計劃額外加碼 1,000 億美元的歷史性投資;歐盟則課徵20%的對等關稅。最後是汽車關稅將於 4/2 起,對所有外國製造的汽車課徵25% 關稅。"
|
| 154 |
+
|
| 155 |
+
tools = [
|
| 156 |
+
{
|
| 157 |
+
"type": "function",
|
| 158 |
+
"function": {
|
| 159 |
+
"name": "get_weather",
|
| 160 |
+
"description": "Get the current weather in a given location",
|
| 161 |
+
"parameters": {
|
| 162 |
+
"type": "object",
|
| 163 |
+
"properties": {
|
| 164 |
+
"location": {"type": "string", "description": "國家或城市名, e.g., 'Taipei'、'Jaipei'"},
|
| 165 |
+
"unit": {"type": "string", "description": "氣溫單位,亞洲城市使用攝氏;歐美城市使用華氏", "enum": ["celsius", "fahrenheit"]}
|
| 166 |
+
},
|
| 167 |
+
"required": ["location", "unit"]
|
| 168 |
+
}
|
| 169 |
+
}
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"type": "function",
|
| 173 |
+
"function": {
|
| 174 |
+
"name": "search",
|
| 175 |
+
"description": "這是一個類似 Google 的搜尋引擎,關於知識、天氣、股票、電影、小說、百科等等問題,如果你不確定答案就搜尋一下。",
|
| 176 |
+
"parameters": {
|
| 177 |
+
"type": "object",
|
| 178 |
+
"properties": {
|
| 179 |
+
"query": {"type": "string", "description": "should be a search query, e.g., '2024 南韓 戒嚴'"}
|
| 180 |
+
},
|
| 181 |
+
"required": ["query"]
|
| 182 |
+
}
|
| 183 |
+
}
|
| 184 |
+
}
|
| 185 |
+
]
|
| 186 |
+
```
|
| 187 |
+
|
| 188 |
+
### 3️⃣ 執行工具調用(Tool Calls)
|
| 189 |
+
|
| 190 |
+
> **⚠️ 注意:system_prompt 可以不用帶,除非是需要時間基準的工具。**
|
| 191 |
+
```python
|
| 192 |
+
response = client.chat.completions.create(
|
| 193 |
+
model=client.models.list().data[0].id,
|
| 194 |
+
messages=[
|
| 195 |
+
{"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"},
|
| 196 |
+
{"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"},
|
| 197 |
+
],
|
| 198 |
+
max_tokens=1500,
|
| 199 |
+
temperature=0.6,
|
| 200 |
+
top_p=0.95,
|
| 201 |
+
tools=tools,
|
| 202 |
+
tool_choice="auto"
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
print(response.choices[0].message.reasoning_content)
|
| 206 |
+
print(response.choices[0].message.tool_calls)
|
| 207 |
+
```
|
| 208 |
+
|
| 209 |
+
#### 🧠 推理內容輸出(僅顯示部分)
|
| 210 |
+
> 好的,我需要幫助這個使用者解決他們的問題。他們問了兩件事:首先,臺北市的天氣情況,以及第二,關於川普最近的關稅政策。
|
| 211 |
+
> 對於第一���分,他們提到了“臺北”,所以應該呼叫 get_weather 函式…
|
| 212 |
+
> 接下來是關於川普的新關稅政策…
|
| 213 |
+
> 總結一下,我需要分別進行兩次 API 呼叫,每次都有各自正確填寫的參數…
|
| 214 |
+
|
| 215 |
+
#### ⚙️ Tool Calls List
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
```json
|
| 219 |
+
[ChatCompletionMessageToolCall(id='chatcmpl-tool-35e74420119349999913a10133b84bd3', function=Function(arguments='{"location": "Taipei", "unit": "celsius"}', name='get_weather'), type='function'), ChatCompletionMessageToolCall(id='chatcmpl-tool-7ffdcb98e59f4134a6171defe7f2e31b', function=Function(arguments='{"query": "Donald Trump latest tariffs policy"}', name='search'), type='function')]
|
| 220 |
+
```
|
| 221 |
+
|
| 222 |
+
### 4️⃣ 產生最終回答
|
| 223 |
+
|
| 224 |
+
```python
|
| 225 |
+
response = client.chat.completions.create(
|
| 226 |
+
model=client.models.list().data[0].id,
|
| 227 |
+
messages=[
|
| 228 |
+
{"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"},
|
| 229 |
+
{"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"},
|
| 230 |
+
{
|
| 231 |
+
"role": "assistant",
|
| 232 |
+
"content": "",
|
| 233 |
+
"tool_calls": [
|
| 234 |
+
{
|
| 235 |
+
"id": response.choices[0].message.tool_calls[0].id,
|
| 236 |
+
"type": "function",
|
| 237 |
+
"function": {
|
| 238 |
+
"name": response.choices[0].message.tool_calls[0].function.name,
|
| 239 |
+
"arguments": response.choices[0].message.tool_calls[0].function.arguments
|
| 240 |
+
}
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"id": response.choices[0].message.tool_calls[1].id,
|
| 244 |
+
"type": "function",
|
| 245 |
+
"function": {
|
| 246 |
+
"name": response.choices[0].message.tool_calls[1].function.name,
|
| 247 |
+
"arguments": response.choices[0].message.tool_calls[1].function.arguments
|
| 248 |
+
}
|
| 249 |
+
}
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"role": "tool",
|
| 254 |
+
"content": search(**json.loads(response.choices[0].message.tool_calls[0].function.arguments)),
|
| 255 |
+
"tool_call_id": response.choices[0].message.tool_calls[0].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"role": "tool",
|
| 259 |
+
"content": get_weather(**json.loads(response.choices[0].message.tool_calls[1].function.arguments)),
|
| 260 |
+
"tool_call_id": response.choices[0].message.tool_calls[1].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call
|
| 261 |
+
}
|
| 262 |
+
],
|
| 263 |
+
max_tokens=1500,
|
| 264 |
+
temperature=0.6,
|
| 265 |
+
top_p=0.95,
|
| 266 |
+
tools=tools,
|
| 267 |
+
tool_choice="auto"
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
print(response.choices[0].message.reasoning_content)
|
| 271 |
+
print(response.choices[0].message.content)
|
| 272 |
+
```
|
| 273 |
+
|
| 274 |
+
#### 🧠 推理內容輸出(僅顯示部分)
|
| 275 |
+
> 首先,我需要處理使用者的查詢,他們要求了解臺北市的當下氣溫以及川普最近的關稅政策…
|
| 276 |
+
> 在呼叫了 `get_weather` 後得到了臺北市氣溫為 26 度(攝氏)…
|
| 277 |
+
> 接著,使用 `search` 搜尋「川普最新關稅政策 2025」…
|
| 278 |
+
> 整合後,我提供如下摘要:
|
| 279 |
+
|
| 280 |
+
#### 📋 最終輸出內容
|
| 281 |
+
|
| 282 |
+
```text
|
| 283 |
+
以下是您請求的資訊:
|
| 284 |
+
|
| 285 |
+
**臺北市氣溫**
|
| 286 |
+
- 目前的氣溫為 **26°C**(攝氏)
|
| 287 |
+
- 天候狀況:晴朗無風
|
| 288 |
+
|
| 289 |
+
**川普最新關稅政策概述**
|
| 290 |
+
1. **對等關稅政策**
|
| 291 |
+
- 對 18 個經濟體課徵 50% 的對等關稅
|
| 292 |
+
- 自 4 月 5 日起,所有進口產品全面徵收 10% 基本關稅
|
| 293 |
+
|
| 294 |
+
2. **報復型對等關稅**
|
| 295 |
+
- 日本 24%、歐盟 20%
|
| 296 |
+
|
| 297 |
+
3. **對中國的高額關稅**
|
| 298 |
+
- 增加至 54%(原有關稅 + 新增 34%)
|
| 299 |
+
|
| 300 |
+
4. **特殊案例**
|
| 301 |
+
- 加拿大與墨西哥不適用,但其他商品課徵 25%
|
| 302 |
+
- 汽車與部分商品的免稅即將到期
|
| 303 |
+
|
| 304 |
+
5. **對台灣的影響**
|
| 305 |
+
- 美國計畫對台灣課徵 32% 關稅,但晶片暫無額外課稅
|
| 306 |
+
|
| 307 |
+
6. **全球視角**
|
| 308 |
+
- 歐盟與日本關稅比例相對較高
|
| 309 |
+
```
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
## Citation
|
| 313 |
+
|
| 314 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 315 |
+
```yaml
|
| 316 |
+
@misc{twinkleai2025llama3.2f1,
|
| 317 |
+
title = {Llama-3.2-3B-F1-Reasoning-Instruct: A Traditional Chinese Instruction-Tuned Reasoning Language Model for Taiwan},
|
| 318 |
+
author = {Huang, Liang Hsun and Chen, Min Yi and Lin, Wen Bin and Chuang, Chao Chun and Sung, Dave},
|
| 319 |
+
year = {2025},
|
| 320 |
+
howpublished = {\url{https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct}},
|
| 321 |
+
note = {Twinkle AI and APMIC. All authors contributed equally.}
|
| 322 |
+
}
|
| 323 |
+
```
|
| 324 |
+
|
| 325 |
+
## Acknowledge
|
| 326 |
+
- 特此感謝[國家高速網路與計算中心](https://www.nchc.org.tw/)的指導與 [APMIC](https://www.apmic.ai/) 的算力支援,才得以讓本專案訓利完成。
|
| 327 |
+
- 特此致謝黃啟聖老師、許武龍(哈爸)、臺北市立第一女子高級中學物理科陳姿燁老師、[奈視科技](https://nanoseex.com/) CTO Howard、[AIPLUX Technology](https://aiplux.com/)、郭家嘉老師以及所有在資料集製作過程中��供寶貴協助的夥伴。
|
| 328 |
+
|
| 329 |
+
## Model Card Authors
|
| 330 |
+
|
| 331 |
+
[Twinkle AI](https://huggingface.co/twinkle-ai)
|
| 332 |
+
|
| 333 |
+
## Model Card Contact
|
| 334 |
+
|
| 335 |
+
[Twinkle AI](https://huggingface.co/twinkle-ai)
|