phaedawg commited on
Commit
043e5fd
·
verified ·
1 Parent(s): d7566e4

Updated ReadME.md

Browse files
Files changed (1) hide show
  1. README.md +145 -1
README.md CHANGED
@@ -1 +1,145 @@
1
- First
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: vllm
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - text-generation
8
+ - conversational
9
+ - compressed-tensors
10
+ - awq
11
+ - w4a16
12
+ - int8
13
+ - quantized
14
+ base_model: TheDrummer/Fallen-Command-A-111B-v1
15
+ base_model_relation: quantized
16
+ quantized_by: TheHouseOfTheDude
17
+ ---
18
+
19
+ # Fallen-Command-A-111B-v1 — **Quantized** (compressed-tensors for vLLM)
20
+
21
+ This repository provides **quantized runtime packages** of
22
+ **[TheDrummer/Fallen-Command-A-111B-v1](https://huggingface.co/TheDrummer/Fallen-Command-A-111B-v1)**, a finetune of
23
+ **[CohereLabs/c4ai-command-a-03-2025](https://huggingface.co/CohereLabs/c4ai-command-a-03-2025)** (aka **Command A**), repackaged for **vLLM** using the **compressed‑tensors** format.
24
+
25
+ > **TL;DR**
26
+ > - **This repo is quantized** with branches **W4A16** and **W8A16**.
27
+ > - Load with **vLLM** using `--quantization compressed-tensors`.
28
+ > - Command A (111B) is a **dense**, enterprise‑oriented model with **256K context**, high throughput, and strong capabilities for **tool use, agents, RAG, and multilingual** tasks.
29
+
30
+ ---
31
+
32
+ ## Revisions & Branches
33
+
34
+ > The **`main`** branch is a **landing page** (model card + links). All runnable artifacts live under per‑revision branches.
35
+
36
+ - **main** — placeholder / landing page
37
+ - **W4A16** — 4‑bit weights / 16‑bit activations builds and runtime assets
38
+ - **W8A16** — 8‑bit weights / 16‑bit activations builds
39
+
40
+ ---
41
+
42
+ ## Repository Contents (per revision)
43
+
44
+ - **Sharded quantized weights** in `.safetensors` with an index (`model.safetensors.index.json`)
45
+ - `config.json` including **compressed‑tensors** metadata (`weight_format`, `quantization`, `quantization_config`)
46
+ - Tokenizer artifacts (`tokenizer.json`, `tokenizer.model`, etc.)
47
+ - Optional: `chat_template.jinja` (inherits the parent finetune’s chat format)
48
+
49
+ > Exact files can differ by branch; see the **Files and versions** tab for each revision.
50
+
51
+ ---
52
+
53
+ ## About **Command A** (how it differs from Qwen/Qwen3 and others)
54
+
55
+ - **Dense 111B** (not MoE): All parameters are active at inference; optimized for **throughput** and **enterprise reliability**.
56
+ - **256K context**: supports very long conversations and documents.
57
+ - **Enterprise agentic focus**: excels at **tool use**, **RAG**, **agents**, and **multilingual** tasks.
58
+ - **Efficiency**: designed for high tokens/sec and practical deployment footprints compared to similarly strong models.
59
+
60
+ > See the Command A resources for details (technical report, model card, and product docs).
61
+
62
+ ---
63
+
64
+ ## Quantization recipe & implementation notes (from the attached script)
65
+
66
+ The **W4A16** builds in this repo were produced with a modern **AWQ** recipe via **llm‑compressor** (AutoAWQ successor). Key choices:
67
+
68
+ - **Scheme**: **W4A16**, **symmetric** INT4 weights, **group_size=128** targeting **Linear** layers.
69
+ - **Ignored**: `lm_head` left in higher precision.
70
+ - **Calibration data**: `wikitext-2-raw-v1` **train[:256]**, shuffled, preprocessed to `text`.
71
+ - **Calibration setup**: `num_calibration_samples=128`, `max_seq_length=256`.
72
+ - **Orchestration**: uses `oneshot()` to stream layers—**no manual device map / offloading**; relies on llm‑compressor’s memory management.
73
+ - **Export**: saved with `save_compressed=True` to include **compressed‑tensors** runtime metadata for vLLM.
74
+ - **Runtime dtype**: activations served in **BF16/FP16** (A16) at inference.
75
+
76
+ The **INT8‑W8A16** branch follows the same structure, trading slightly higher memory for extra stability on some workloads.
77
+
78
+ ---
79
+
80
+ ## Quickstart — vLLM (compressed‑tensors)
81
+
82
+ Install vLLM (recent version recommended):
83
+
84
+ ```bash
85
+ pip install vllm
86
+ ```
87
+
88
+ Serve (adjust to your hardware):
89
+
90
+ ```bash
91
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 vllm serve TheHouseOfTheDude/Fallen-Command-A-111B-v1_Compressed-Tensors --quantization compressed-tensors --tensor-parallel-size 8 --max-model-len 256000 --gpu-memory-utilization 0.70 --dtype bfloat16
92
+ ```
93
+
94
+ Query via **Chat Completions**:
95
+
96
+ ```bash
97
+ curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
98
+ "model": "TheHouseOfTheDude/Fallen-Command-A-111B-v1_Compressed-Tensors",
99
+ "messages": [
100
+ {"role":"system","content":"You are Command-A (finetuned), helpful, precise, and safe."},
101
+ {"role":"user","content":"Outline a retrieval pipeline for multilingual legal documents."}
102
+ ],
103
+ "max_tokens": 512,
104
+ "temperature": 0.7,
105
+ "top_p": 0.95
106
+ }'
107
+ ```
108
+
109
+ > **Note:** `compressed‑tensors` is a **vLLM runtime format**. Loading this artifact directly in vanilla 🤗 Transformers is not supported; use vLLM for inference. For Transformers, use a different export (e.g., GPTQ/AWQ compatible) or full‑precision weights.
110
+
111
+ ---
112
+
113
+ ## Prompting / Chat Template
114
+
115
+ This package follows the parent finetune’s **chat** conventions. If a `chat_template.jinja` is present in the branch, `apply_chat_template` will use it automatically.
116
+
117
+ ---
118
+
119
+ ## Lineage
120
+
121
+ - **Base model:** [CohereLabs/c4ai-command-a-03-2025](https://huggingface.co/CohereLabs/c4ai-command-a-03-2025)
122
+ - **Finetuned parent:** [TheDrummer/Fallen-Command-A-111B-v1](https://huggingface.co/TheDrummer/Fallen-Command-A-111B-v1)
123
+ - **This repo:** **Quantized child** of the finetune (**compressed‑tensors** for vLLM)
124
+
125
+ ---
126
+
127
+ ## Hardware & Tips (rule‑of‑thumb)
128
+
129
+ - 111B dense models typically require **multi‑GPU** deployments for best throughput.
130
+ - Long contexts are **KV‑cache** heavy—tune `--max-model-len` and batch size.
131
+ - Prefer **BF16** on GPUs with native support; otherwise **FP16**.
132
+ - Consider CUDA Graphs if stable in your stack.
133
+
134
+ ---
135
+
136
+ ## License & Usage
137
+
138
+ This distribution inherits the licenses/policies of the **finetuned parent** and its **base** model.
139
+ Use of the model constitutes acceptance of the upstream terms.
140
+
141
+ ---
142
+
143
+ ## Changelog
144
+
145
+ - **v1 (current)** — Quantized compressed‑tensors exports for Fallen‑Command‑A‑111B‑v1; added **W4A16** and **INT8‑W8A16** branches; model card set for **Quantized** classification.