TirathP commited on
Commit
9a8f8ef
·
1 Parent(s): fa4f400

Model save

Browse files
Files changed (1) hide show
  1. README.md +8 -24
README.md CHANGED
@@ -2,32 +2,13 @@
2
  license: apache-2.0
3
  base_model: google/vit-base-patch16-224
4
  tags:
5
- - image-classification
6
  - generated_from_trainer
7
- datasets:
8
- - imagefolder
9
  metrics:
10
  - accuracy
11
  - f1
12
  model-index:
13
  - name: fine-tuned
14
- results:
15
- - task:
16
- name: Image Classification
17
- type: image-classification
18
- dataset:
19
- name: beans
20
- type: imagefolder
21
- config: default
22
- split: train
23
- args: default
24
- metrics:
25
- - name: Accuracy
26
- type: accuracy
27
- value: 1.0
28
- - name: F1
29
- type: f1
30
- value: 1.0
31
  ---
32
 
33
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -35,11 +16,11 @@ should probably proofread and complete it, then remove this comment. -->
35
 
36
  # fine-tuned
37
 
38
- This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the beans dataset.
39
  It achieves the following results on the evaluation set:
40
- - Loss: 0.1679
41
- - Accuracy: 1.0
42
- - F1: 1.0
43
 
44
  ## Model description
45
 
@@ -68,6 +49,9 @@ The following hyperparameters were used during training:
68
 
69
  ### Training results
70
 
 
 
 
71
 
72
 
73
  ### Framework versions
 
2
  license: apache-2.0
3
  base_model: google/vit-base-patch16-224
4
  tags:
 
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - accuracy
8
  - f1
9
  model-index:
10
  - name: fine-tuned
11
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # fine-tuned
18
 
19
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 7.3529
22
+ - Accuracy: 0.0596
23
+ - F1: 0.0075
24
 
25
  ## Model description
26
 
 
49
 
50
  ### Training results
51
 
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
54
+ | 0.3773 | 2.54 | 1000 | 7.3529 | 0.0596 | 0.0075 |
55
 
56
 
57
  ### Framework versions