SD-VITON / test_generator.py
Ubaida10's picture
Upload test_generator.py with huggingface_hub
c39d2ef verified
raw
history blame
14 kB
import torch
import torch.nn as nn
from torchvision.utils import make_grid as make_image_grid
from torchvision.utils import save_image
import argparse
import os
import time
from cp_dataset_test import CPDatasetTest, CPDataLoader
from networks import ConditionGenerator, load_checkpoint, make_grid, make_grid_3d
from network_generator import SPADEGenerator
from tensorboardX import SummaryWriter
from utils import *
import torchgeometry as tgm
from collections import OrderedDict
from torch.nn.modules.utils import _pair, _quadruple
def remove_overlap(seg_out, warped_cm):
assert len(warped_cm.shape) == 4
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
return warped_cm
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument("--gpu_ids", default="")
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch-size', type=int, default=1)
parser.add_argument('--fp16', action='store_true', help='use amp')
parser.add_argument('--test_name', type=str, default='test', help='test name')
parser.add_argument("--dataroot", default="./data")
parser.add_argument("--datamode", default="test")
parser.add_argument("--data_list", default="./data/test_pairs.txt")
parser.add_argument("--output_dir", type=str)
parser.add_argument("--datasetting", default="paired")
parser.add_argument("--fine_width", type=int, default=768)
parser.add_argument("--fine_height", type=int, default=1024)
parser.add_argument('--tensorboard_dir', type=str, default='tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--tocg_checkpoint', type=str, default='', help='tocg checkpoint')
parser.add_argument('--gen_checkpoint', type=str, default='./gen_step_110000.pth', help='G checkpoint')
parser.add_argument("--tensorboard_count", type=int, default=100)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
parser.add_argument("--semantic_nc", type=int, default=13)
parser.add_argument("--output_nc", type=int, default=13)
parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
# network
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
# Hyper-parameters
parser.add_argument('--upsample', type=str, default='bilinear', choices=['nearest', 'bilinear'])
parser.add_argument('--occlusion', action='store_true', help="Occlusion handling")
# condition generator
parser.add_argument('--cond_G_ngf', type=int, default=96)
parser.add_argument("--cond_G_input_width", type=int, default=192)
parser.add_argument("--cond_G_input_height", type=int, default=256)
parser.add_argument('--cond_G_num_layers', type=int, default=5)
# generator
parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
parser.add_argument('--num_upsampling_layers', choices=('normal', 'more', 'most'), default='most', # normal: 256, more: 512
help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator")
parser.add_argument("--composition_mask", action='store_true', help='shuffle input data')
opt = parser.parse_args()
return opt
def load_checkpoint_G(model, checkpoint_path):
if not os.path.exists(checkpoint_path):
print(f"Checkpoint path {checkpoint_path} does not exist!")
return
checkpoint = torch.load(checkpoint_path)
# Check if checkpoint contains nested generator_state_dict
state_dict = checkpoint.get('generator_state_dict', checkpoint)
# Create new state dictionary with modified keys
new_state_dict = OrderedDict()
for k, v in state_dict.items():
# Replace 'ace' with 'alias' and remove '.Spade' if present
new_key = k.replace('ace', 'alias').replace('.Spade', '')
new_state_dict[new_key] = v
# Load state dictionary into model
model.load_state_dict(new_state_dict, strict=False) # Use strict=False to debug missing keys
model.cuda()
print(f"Loaded checkpoint from {checkpoint_path}")
def test(opt, test_loader, board, tocg, generator):
gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
gauss = gauss.cuda()
# Model
tocg.cuda()
tocg.eval()
generator.eval()
if opt.output_dir is not None:
output_dir = opt.output_dir
else:
output_dir = os.path.join('./output', opt.test_name,
opt.datamode, opt.datasetting, 'generator', 'output')
grid_dir = os.path.join('./output', opt.test_name,
opt.datamode, opt.datasetting, 'generator', 'grid')
os.makedirs(grid_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
num = 0
with torch.no_grad():
for inputs in test_loader.data_loader:
pose_map = inputs['pose'].cuda()
pre_clothes_mask = inputs['cloth_mask'][opt.datasetting].cuda()
label = inputs['parse']
parse_agnostic = inputs['parse_agnostic']
agnostic = inputs['agnostic'].cuda()
clothes = inputs['cloth'][opt.datasetting].cuda() # target cloth
densepose = inputs['densepose'].cuda()
im = inputs['image']
input_label, input_parse_agnostic = label.cuda(), parse_agnostic.cuda()
pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float64)).cuda()
# down
pose_map_down = F.interpolate(pose_map, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
pre_clothes_mask_down = F.interpolate(pre_clothes_mask, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
input_label_down = F.interpolate(input_label, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
input_parse_agnostic_down = F.interpolate(input_parse_agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
agnostic_down = F.interpolate(agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
clothes_down = F.interpolate(clothes, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
densepose_down = F.interpolate(densepose, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
shape = pre_clothes_mask.shape
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list_taco, fake_segmap, _, warped_clothmask_taco, flow_list_tvob, _, _, = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_taco.detach().cpu().numpy() > 0.5).astype(np.float64)).cuda()
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_taco
fake_segmap = fake_segmap * cloth_mask
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(opt.fine_height, opt.fine_width), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
# warped cloth
N, _, iH, iW = clothes.shape
N, flow_iH, flow_iW, _ = flow_list_tvob[-1].shape
flow_tvob = F.interpolate(flow_list_tvob[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_tvob_norm = torch.cat([flow_tvob[:, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_tvob[:, :, :, 1:2] / ((flow_iH - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW)
grid_3d = make_grid_3d(N, iH, iW)
warped_grid_tvob = grid + flow_tvob_norm
warped_cloth_tvob = F.grid_sample(clothes, warped_grid_tvob, padding_mode='border')
warped_clothmask_tvob = F.grid_sample(pre_clothes_mask, warped_grid_tvob, padding_mode='border')
flow_taco = F.interpolate(flow_list_taco[-1].permute(0, 4, 1, 2, 3), size=(2, iH, iW), mode='trilinear').permute(0, 2, 3, 4, 1)
flow_taco_norm = torch.cat([flow_taco[:, :, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_taco[:, :, :, :, 1:2] / ((flow_iH - 1.0) / 2.0), flow_taco[:, :, :, :, 2:3]], 4)
warped_cloth_tvob = warped_cloth_tvob.unsqueeze(2)
warped_cloth_taco = F.grid_sample(torch.cat((warped_cloth_tvob, torch.zeros_like(warped_cloth_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_cloth_taco = warped_cloth_taco[:,:,0,:,:]
warped_clothmask_tvob = warped_clothmask_tvob.unsqueeze(2)
warped_clothmask_taco = F.grid_sample(torch.cat((warped_clothmask_tvob, torch.zeros_like(warped_clothmask_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_clothmask_taco = warped_clothmask_taco[:,:,0,:,:]
if opt.occlusion:
warped_clothmask_taco = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask_taco)
warped_cloth_taco = warped_cloth_taco * warped_clothmask_taco + torch.ones_like(warped_cloth_taco) * (1 - warped_clothmask_taco)
if opt.composition_mask:
output, comp_mask = generator(torch.cat((agnostic, densepose, warped_cloth_taco), dim=1), parse)
comp_mask1 = comp_mask * warped_clothmask_taco
comp_mask = parse[:,2:3,:,:] * comp_mask1
output = warped_cloth_taco * comp_mask + output * (1 - comp_mask)
else:
output = generator(torch.cat((agnostic, densepose, warped_cloth_taco), dim=1), parse)
# visualize
unpaired_names = []
for i in range(shape[0]):
grid = make_image_grid([(clothes[i].cpu() / 2 + 0.5), (pre_clothes_mask[i].cpu()).expand(3, -1, -1), visualize_segmap(parse_agnostic.cpu(), batch=i), ((densepose.cpu()[i]+1)/2),
(warped_cloth_taco[i].cpu().detach() / 2 + 0.5), (warped_clothmask_taco[i].cpu().detach()).expand(3, -1, -1), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
(pose_map[i].cpu()/2 +0.5), (warped_cloth_taco[i].cpu()/2 +0.5), (agnostic[i].cpu()/2 +0.5),
(im[i]/2 +0.5), (output[i].cpu()/2 +0.5)],
nrow=4)
unpaired_name = (inputs['c_name']['paired'][i].split('.')[0] + '_' + inputs['c_name'][opt.datasetting][i].split('.')[0] + '.png')
save_image(grid, os.path.join(grid_dir, unpaired_name))
unpaired_names.append(unpaired_name)
# save output
save_images(output, unpaired_names, output_dir)
num += shape[0]
print(num)
def main():
opt = get_opt()
print(opt)
print("Start to test %s!")
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
# create test dataset & loader
test_dataset = CPDatasetTest(opt)
test_loader = CPDataLoader(opt, test_dataset)
# visualization
if not os.path.exists(opt.tensorboard_dir):
os.makedirs(opt.tensorboard_dir)
board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.test_name, opt.datamode, opt.datasetting))
## Model
# tocg
input1_nc = 4
input2_nc = opt.semantic_nc + 3
tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=opt.output_nc, ngf=opt.cond_G_ngf, norm_layer=nn.BatchNorm2d, num_layers=opt.cond_G_num_layers) # num_layers: training condition network w/ fine_height 256 -> 5, - w/ fine_height 512 -> 6, - w/ fine_height 1024 -> 7
# generator
opt.semantic_nc = 7
generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()
# Load Checkpoint
load_checkpoint(tocg, opt.tocg_checkpoint)
load_checkpoint_G(generator, opt.gen_checkpoint)
# Test
test(opt, test_loader, board, tocg, generator)
print("Finished testing!")
if __name__ == "__main__":
main()