SD-VITON / train_generator.py
Ubaida10's picture
Upload train_generator.py with huggingface_hub
550ed07 verified
import torch
import torch.nn as nn
from torch.nn import functional as F
import argparse
import os
import time
from cp_dataset import CPDataset, CPDataLoader
from cp_dataset_test import CPDatasetTest
from networks import ConditionGenerator, VGGLoss, load_checkpoint, save_checkpoint, make_grid, make_grid_3d
from network_generator import SPADEGenerator, MultiscaleDiscriminator, GANLoss, Projected_GANs_Loss, set_requires_grad
from sync_batchnorm import DataParallelWithCallback
from utils import create_network
import sys
from tqdm import tqdm
import numpy as np
from torch.utils.data import Subset
from torchvision.transforms import transforms
import eval_models as models
import torchgeometry as tgm
from pg_modules.discriminator import ProjectedDiscriminator
import cv2
def remove_overlap(seg_out, warped_cm):
assert len(warped_cm.shape) == 4
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
return warped_cm
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--gpu_ids', type=str, default='0')
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch_size', type=int, default=8)
parser.add_argument('--fp16', action='store_true', help='use amp')
parser.add_argument("--dataroot", default="./data/")
parser.add_argument("--datamode", default="train")
parser.add_argument("--data_list", default="train_pairs.txt")
parser.add_argument("--fine_width", type=int, default=768)
parser.add_argument("--fine_height", type=int, default=1024)
parser.add_argument("--radius", type=int, default=20)
parser.add_argument("--grid_size", type=int, default=5)
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--tocg_checkpoint', type=str, help='condition generator checkpoint')
parser.add_argument('--gen_checkpoint', type=str, default='', help='gen checkpoint')
parser.add_argument('--dis_checkpoint', type=str, default='', help='dis checkpoint')
parser.add_argument("--display_count", type=int, default=100)
parser.add_argument("--save_count", type=int, default=1000)
parser.add_argument("--load_step", type=int, default=0)
parser.add_argument("--keep_step", type=int, default=100000)
parser.add_argument("--decay_step", type=int, default=100000)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
parser.add_argument('--resume', action='store_true', help='resume training from the last checkpoint')
# test
parser.add_argument("--lpips_count", type=int, default=1000)
parser.add_argument("--test_datasetting", default="paired")
parser.add_argument("--test_dataroot", default="./data/")
parser.add_argument("--test_data_list", default="test_pairs.txt")
# Hyper-parameters
parser.add_argument('--G_lr', type=float, default=0.0001, help='initial learning rate for adam')
parser.add_argument('--D_lr', type=float, default=0.0004, help='initial learning rate for adam')
# SEAN-related hyper-parameters
parser.add_argument('--GMM_const', type=float, default=None, help='constraint for GMM module')
parser.add_argument('--semantic_nc', type=int, default=13, help='# of input label classes without unknown class')
parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
parser.add_argument('--norm_D', type=str, default='spectralinstance', help='instance normalization or batch normalization')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--num_upsampling_layers', choices=['normal', 'more', 'most'], default='most',
help='If \'more\', add upsampling layer between the two middle resnet blocks. '
'If \'most\', also add one more (upsampling + resnet) layer at the end of the generator.')
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss')
parser.add_argument('--lambda_l1', type=float, default=1.0, help='weight for image-level l1 loss')
parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
parser.add_argument('--lambda_vgg', type=float, default=10.0, help='weight for vgg loss')
# D
parser.add_argument('--n_layers_D', type=int, default=3, help='# layers in each discriminator')
parser.add_argument('--netD_subarch', type=str, default='n_layer', help='architecture of each discriminator')
parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to be used in multiscale')
# G & D arch-related
parser.add_argument("--composition_mask", action='store_true', help='shuffle input data')
# Training
parser.add_argument('--occlusion', action='store_true')
# tocg
# network
parser.add_argument('--cond_G_ngf', type=int, default=96)
parser.add_argument("--cond_G_input_width", type=int, default=192)
parser.add_argument("--cond_G_input_height", type=int, default=256)
parser.add_argument('--cond_G_num_layers', type=int, default=5)
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
# New arguments for selective layer freezing and last layer control
parser.add_argument('--freeze_tocg_layers', type=int, default=0, help='number of layers to freeze in tocg from the start')
parser.add_argument('--freeze_gen_layers', type=int, default=0, help='number of layers to freeze in generator from the start')
parser.add_argument('--last_layer_mode', type=str, default='train', choices=['train', 'half', 'freeze'],
help='Mode for the last layer: train (full training), half (half parameters frozen), freeze (fully frozen)')
opt = parser.parse_args()
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
assert len(opt.gpu_ids) == 0 or opt.batch_size % len(opt.gpu_ids) == 0, \
"Batch size %d is wrong. It must be a multiple of # GPUs %d." \
% (opt.batch_size, len(opt.gpu_ids))
return opt
def apply_layer_freezing(model, num_layers_to_freeze, last_layer_mode):
"""Apply selective layer freezing and handle the last layer based on mode."""
children = list(model.named_children())
total_layers = len(children)
# Freeze specified layers from the start
for i, (name, module) in enumerate(children):
if i < num_layers_to_freeze:
for param in module.parameters():
param.requires_grad = False
# Handle the last layer based on mode
if total_layers > 0 and last_layer_mode != 'train':
last_name, last_module = children[-1]
if last_layer_mode == 'freeze':
for param in last_module.parameters():
param.requires_grad = False
elif last_layer_mode == 'half':
# Freeze half of the parameters in the last layer
params = list(last_module.parameters())
half_idx = len(params) // 2
for param in params[:half_idx]:
param.requires_grad = False
for param in params[half_idx:]:
param.requires_grad = True
def train(opt, train_loader, test_loader, tocg, generator, discriminator, model):
"""
Train Generator and Condition Generator
"""
# Model
tocg.cuda()
tocg.train() # Enable training for tocg
generator.train()
discriminator.train()
if not opt.composition_mask:
discriminator.feature_network.requires_grad_(False)
discriminator.cuda()
model.eval()
# Apply layer freezing
apply_layer_freezing(tocg, opt.freeze_tocg_layers, opt.last_layer_mode)
apply_layer_freezing(generator, opt.freeze_gen_layers, opt.last_layer_mode)
# criterion
criterionGAN = None
if opt.fp16:
if opt.composition_mask:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.HalfTensor)
else:
criterionGAN = Projected_GANs_Loss(tensor=torch.cuda.HalfTensor)
else:
if opt.composition_mask:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.FloatTensor)
else:
criterionGAN = Projected_GANs_Loss(tensor=torch.cuda.FloatTensor)
criterionL1 = nn.L1Loss()
criterionFeat = nn.L1Loss()
criterionVGG = VGGLoss()
# optimizer
optimizer_gen = torch.optim.Adam(
list(generator.parameters()) + list(tocg.parameters()), # Include tocg parameters
lr=opt.G_lr, betas=(0.0, 0.9)
)
scheduler_gen = torch.optim.lr_scheduler.LambdaLR(optimizer_gen, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
optimizer_dis = torch.optim.Adam(discriminator.parameters(), lr=opt.D_lr, betas=(0.0, 0.9))
scheduler_dis = torch.optim.lr_scheduler.LambdaLR(optimizer_dis, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
if opt.fp16:
from apex import amp
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis] = amp.initialize(
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis], opt_level='O1', num_losses=2)
if len(opt.gpu_ids) > 0:
tocg = DataParallelWithCallback(tocg, device_ids=opt.gpu_ids)
generator = DataParallelWithCallback(generator, device_ids=opt.gpu_ids)
discriminator = DataParallelWithCallback(discriminator, device_ids=opt.gpu_ids)
criterionGAN = DataParallelWithCallback(criterionGAN, device_ids=opt.gpu_ids)
criterionFeat = DataParallelWithCallback(criterionFeat, device_ids=opt.gpu_ids)
criterionVGG = DataParallelWithCallback(criterionVGG, device_ids=opt.gpu_ids)
criterionL1 = DataParallelWithCallback(criterionL1, device_ids=opt.gpu_ids)
upsample = torch.nn.Upsample(scale_factor=4, mode='bilinear')
gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
gauss = gauss.cuda()
checkpoint_path = os.path.join(opt.checkpoint_dir, opt.name, 'checkpoint.pth')
if opt.resume:
if os.path.exists(checkpoint_path):
print(f"Resuming from checkpoint: {checkpoint_path}")
checkpoint = torch.load(checkpoint_path)
opt.load_step = checkpoint['step']
generator.load_state_dict(checkpoint['generator_state_dict'])
discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
tocg.load_state_dict(checkpoint['tocg_state_dict']) # Load tocg state
optimizer_gen.load_state_dict(checkpoint['optimizer_gen_state_dict'])
optimizer_dis.load_state_dict(checkpoint['optimizer_dis_state_dict'])
scheduler_gen.load_state_dict(checkpoint['scheduler_gen_state_dict'])
scheduler_dis.load_state_dict(checkpoint['scheduler_dis_state_dict'])
else:
print(f"Checkpoint not found at {checkpoint_path}, starting from scratch")
for step in tqdm(range(opt.load_step, opt.keep_step + opt.decay_step)):
iter_start_time = time.time()
inputs = train_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
# target
im = inputs['image'].cuda()
# Warping Cloth (tocg is now trainable)
pre_clothes_mask_down = F.interpolate(cm, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
densepose_down = F.interpolate(pose, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
flow_list_taco, fake_segmap, warped_cloth_paired_taco, warped_clothmask_paired_taco, flow_list_tvob, warped_cloth_paired_tvob, warped_clothmask_paired_tvob = tocg(input1, input2)
warped_clothmask_paired_taco_onehot = torch.FloatTensor((warped_clothmask_paired_taco.detach().cpu().numpy() > 0.5).astype(float)).cuda()
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired_taco
fake_segmap = fake_segmap * cloth_mask
N, _, iH, iW = c_paired.shape
N, flow_iH, flow_iW, _ = flow_list_tvob[-1].shape
flow_tvob = F.interpolate(flow_list_tvob[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_tvob_norm = torch.cat([flow_tvob[:, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_tvob[:, :, :, 1:2] / ((flow_iH - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW)
grid_3d = make_grid_3d(N, iH, iW)
warped_grid_tvob = grid + flow_tvob_norm
warped_cloth_tvob = F.grid_sample(c_paired, warped_grid_tvob, padding_mode='border')
warped_clothmask_tvob = F.grid_sample(cm, warped_grid_tvob, padding_mode='border')
flow_taco = F.interpolate(flow_list_taco[-1].permute(0, 4, 1, 2, 3), size=(2,iH,iW), mode='trilinear').permute(0, 2, 3, 4, 1)
flow_taco_norm = torch.cat([flow_taco[:, :, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_taco[:, :, :, :, 1:2] / ((flow_iH - 1.0) / 2.0), flow_taco[:, :, :, :, 2:3]], 4)
warped_cloth_tvob = warped_cloth_tvob.unsqueeze(2)
warped_cloth_paired_taco = F.grid_sample(torch.cat((warped_cloth_tvob, torch.zeros_like(warped_cloth_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_cloth_paired_taco = warped_cloth_paired_taco[:,:,0,:,:]
warped_clothmask_tvob = warped_clothmask_tvob.unsqueeze(2)
warped_clothmask_taco = F.grid_sample(torch.cat((warped_clothmask_tvob, torch.zeros_like(warped_clothmask_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_clothmask_taco = warped_clothmask_taco[:,:,0,:,:]
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask_taco = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask_taco)
warped_cloth_paired_taco = warped_cloth_paired_taco * warped_clothmask_taco + torch.ones_like(warped_cloth_paired_taco) * (1-warped_clothmask_taco)
warped_cloth_paired_taco = warped_cloth_paired_taco.detach()
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
# Train the generator and tocg
G_losses = {}
if opt.composition_mask:
output_paired_rendered, output_paired_comp = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
output_paired_comp1 = output_paired_comp * warped_clothmask_taco
output_paired_comp = parse[:,2:3,:,:] * output_paired_comp1
output_paired = warped_cloth_paired_taco * output_paired_comp + output_paired_rendered * (1 - output_paired_comp)
fake_concat = torch.cat((parse, output_paired_rendered), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
G_losses['GAN'] = criterionGAN(pred_fake, True, for_discriminator=False)
num_D = len(pred_fake)
GAN_Feat_loss = torch.cuda.FloatTensor(len(opt.gpu_ids)).zero_()
for i in range(num_D):
num_intermediate_outputs = len(pred_fake[i]) - 1
for j in range(num_intermediate_outputs):
unweighted_loss = criterionFeat(pred_fake[i][j], pred_real[i][j].detach())
GAN_Feat_loss += unweighted_loss * opt.lambda_feat / num_D
G_losses['GAN_Feat'] = GAN_Feat_loss
G_losses['VGG'] = criterionVGG(output_paired, im) * opt.lambda_vgg + criterionVGG(output_paired_rendered, im) * opt.lambda_vgg
G_losses['L1'] = criterionL1(output_paired_rendered, im) * opt.lambda_l1 + criterionL1(output_paired, im) * opt.lambda_l1
G_losses['Composition_Mask'] = torch.mean(torch.abs(1 - output_paired_comp))
loss_gen = sum(G_losses.values()).mean()
else:
set_requires_grad(discriminator, False)
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
pred_fake, feats_fake = discriminator(output_paired)
pred_real, feats_real = discriminator(im)
G_losses['GAN'] = criterionGAN(pred_fake, True, for_discriminator=False) * 0.5
num_D = len(feats_fake)
GAN_Feat_loss = torch.cuda.FloatTensor(len(opt.gpu_ids)).zero_()
for i in range(num_D):
num_intermediate_outputs = len(feats_fake[i])
for j in range(num_intermediate_outputs):
unweighted_loss = criterionFeat(feats_fake[i][j], feats_real[i][j].detach())
GAN_Feat_loss += unweighted_loss * opt.lambda_feat / num_D
G_losses['GAN_Feat'] = GAN_Feat_loss
G_losses['VGG'] = criterionVGG(output_paired, im) * opt.lambda_vgg
G_losses['L1'] = criterionL1(output_paired, im) * opt.lambda_l1
loss_gen = sum(G_losses.values()).mean()
optimizer_gen.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_gen, optimizer_gen, loss_id=0) as loss_gen_scaled:
loss_gen_scaled.backward()
else:
loss_gen.backward()
optimizer_gen.step()
# Train the discriminator
D_losses = {}
if opt.composition_mask:
with torch.no_grad():
output_paired_rendered, output_comp = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
output_comp1 = output_comp * warped_clothmask_taco
output_comp = parse[:,2:3,:,:] * output_comp1
output = warped_cloth_paired_taco * output_comp + output_paired_rendered * (1 - output_comp)
output_comp = output_comp.detach()
output = output.detach()
output_comp.requires_grad_()
output.requires_grad_()
fake_concat = torch.cat((parse, output_paired_rendered), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
D_losses['D_Fake'] = criterionGAN(pred_fake, False, for_discriminator=True)
D_losses['D_Real'] = criterionGAN(pred_real, True, for_discriminator=True)
loss_dis = sum(D_losses.values()).mean()
else:
set_requires_grad(discriminator, True)
discriminator.module.feature_network.requires_grad_(False)
with torch.no_grad():
output = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
output = output.detach()
output.requires_grad_()
pred_fake, _ = discriminator(output)
pred_real, _ = discriminator(im)
D_losses['D_Fake'] = criterionGAN(pred_fake, False, for_discriminator=True)
D_losses['D_Real'] = criterionGAN(pred_real, True, for_discriminator=True)
loss_dis = sum(D_losses.values()).mean()
optimizer_dis.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_dis, optimizer_dis, loss_id=1) as loss_dis_scaled:
loss_dis_scaled.backward()
else:
loss_dis.backward()
optimizer_dis.step()
if not opt.composition_mask:
set_requires_grad(discriminator, False)
if (step+1) % 100 == 0:
a_0 = im.cuda()[0]
b_0 = output.cuda()[0]
c_0 = warped_cloth_paired_taco.cuda()[0]
combine = torch.cat((a_0, b_0, c_0), dim=2)
cv_img=(combine.permute(1,2,0).detach().cpu().numpy()+1)/2
rgb=(cv_img*255).astype(np.uint8)
bgr=cv2.cvtColor(rgb,cv2.COLOR_RGB2BGR)
cv2.imwrite('sample_fs_toig/'+str(step)+'.jpg',bgr)
# Evaluate the generator
if (step + 1) % opt.lpips_count == 0:
generator.eval()
tocg.eval()
T2 = transforms.Compose([transforms.Resize((128, 128))])
lpips_list = []
avg_distance = 0.0
with torch.no_grad():
print("LPIPS")
for i in tqdm(range(500)):
inputs = test_loader.next_batch()
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
im = inputs['image'].cuda()
pre_clothes_mask_down = F.interpolate(cm, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
densepose_down = F.interpolate(pose, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
flow_list_taco, fake_segmap, warped_cloth_paired_taco, warped_clothmask_paired_taco, flow_list_tvob, warped_cloth_paired_tvob, warped_clothmask_paired_tvob = tocg(input1, input2)
warped_clothmask_paired_taco_onehot = torch.FloatTensor((warped_clothmask_paired_taco.detach().cpu().numpy() > 0.5).astype(float)).cuda()
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired_taco
fake_segmap = fake_segmap * cloth_mask
N, _, iH, iW = c_paired.shape
N, flow_iH, flow_iW, _ = flow_list_tvob[-1].shape
flow_tvob = F.interpolate(flow_list_tvob[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_tvob_norm = torch.cat([flow_tvob[:, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_tvob[:, :, :, 1:2] / ((flow_iH - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW)
grid_3d = make_grid_3d(N, iH, iW)
warped_grid_tvob = grid + flow_tvob_norm
warped_cloth_tvob = F.grid_sample(c_paired, warped_grid_tvob, padding_mode='border')
warped_clothmask_tvob = F.grid_sample(cm, warped_grid_tvob, padding_mode='border')
flow_taco = F.interpolate(flow_list_taco[-1].permute(0, 4, 1, 2, 3), size=(2, iH, iW), mode='trilinear').permute(0, 2, 3, 4, 1)
flow_taco_norm = torch.cat([flow_taco[:, :, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_taco[:, :, :, :, 1:2] / ((flow_iH - 1.0) / 2.0), flow_taco[:, :, :, :, 2:3]], 4)
warped_cloth_tvob = warped_cloth_tvob.unsqueeze(2)
warped_cloth_paired_taco = F.grid_sample(torch.cat((warped_cloth_tvob, torch.zeros_like(warped_cloth_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_cloth_paired_taco = warped_cloth_paired_taco[:,:,0,:,:]
warped_clothmask_tvob = warped_clothmask_tvob.unsqueeze(2)
warped_clothmask_taco = F.grid_sample(torch.cat((warped_clothmask_tvob, torch.zeros_like(warped_clothmask_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_clothmask_taco = warped_clothmask_taco[:,:,0,:,:]
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask_taco = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask_taco)
warped_cloth_paired_taco = warped_cloth_paired_taco * warped_clothmask_taco + torch.ones_like(warped_cloth_paired_taco) * (1-warped_clothmask_taco)
warped_cloth_paired_taco = warped_cloth_paired_taco.detach()
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
if opt.composition_mask:
output_paired_rendered, output_paired_comp = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
output_paired_comp1 = output_paired_comp * warped_clothmask_taco
output_paired_comp = parse[:,2:3,:,:] * output_paired_comp1
output_paired = warped_cloth_paired_taco * output_paired_comp + output_paired_rendered * (1 - output_paired_comp)
else:
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
avg_distance += model.forward(T2(im), T2(output_paired))
avg_distance = avg_distance / 500
print(f"LPIPS: {avg_distance}")
generator.train()
tocg.train()
if (step + 1) % opt.display_count == 0:
t = time.time() - iter_start_time
print("step: %8d, time: %.3f, G_loss: %.4f, G_adv_loss: %.4f, D_loss: %.4f, D_fake_loss: %.4f, D_real_loss: %.4f"
% (step + 1, t, loss_gen.item(), G_losses['GAN'].mean().item(), loss_dis.item(),
D_losses['D_Fake'].mean().item(), D_losses['D_Real'].mean().item()), flush=True)
if (step + 1) % opt.save_count == 0:
checkpoint = {
'step': step + 1,
'generator_state_dict': generator.state_dict(),
'discriminator_state_dict': discriminator.state_dict(),
'tocg_state_dict': tocg.state_dict(), # Save tocg state
'optimizer_gen_state_dict': optimizer_gen.state_dict(),
'optimizer_dis_state_dict': optimizer_dis.state_dict(),
'scheduler_gen_state_dict': scheduler_gen.state_dict(),
'scheduler_dis_state_dict': scheduler_dis.state_dict(),
}
torch.save(checkpoint, checkpoint_path)
if (step + 1) % 1000 == 0:
scheduler_gen.step()
scheduler_dis.step()
def main():
opt = get_opt()
print(opt)
print("Start to train %s!" % opt.name)
os.makedirs('sample_fs_toig', exist_ok=True)
os.makedirs(os.path.join(opt.checkpoint_dir, opt.name), exist_ok=True)
train_dataset = CPDataset(opt)
train_loader = CPDataLoader(opt, train_dataset)
opt.batch_size = 1
opt.dataroot = opt.test_dataroot
opt.datamode = 'test'
opt.data_list = opt.test_data_list
test_dataset = CPDatasetTest(opt)
test_dataset = Subset(test_dataset, np.arange(500))
test_loader = CPDataLoader(opt, test_dataset)
input1_nc = 4
input2_nc = opt.semantic_nc + 3
tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=13, ngf=opt.cond_G_ngf, norm_layer=nn.BatchNorm2d, num_layers=opt.cond_G_num_layers)
load_checkpoint(tocg, opt.tocg_checkpoint)
generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()
if len(opt.gpu_ids) > 0:
assert(torch.cuda.is_available())
generator.cuda()
generator.init_weights(opt.init_type, opt.init_variance)
discriminator = None
if opt.composition_mask:
discriminator = create_network(MultiscaleDiscriminator, opt)
else:
discriminator = ProjectedDiscriminator(interp224=False)
model = models.PerceptualLoss(model='net-lin',net='alex',use_gpu=True)
if opt.gen_checkpoint and os.path.exists(opt.gen_checkpoint):
load_checkpoint(generator, opt.gen_checkpoint)
if opt.dis_checkpoint and os.path.exists(opt.dis_checkpoint):
load_checkpoint(discriminator, opt.dis_checkpoint)
train(opt, train_loader, test_loader, tocg, generator, discriminator, model)
save_checkpoint(generator, os.path.join(opt.checkpoint_dir, opt.name, 'gen_model_final.pth'))
save_checkpoint(discriminator, os.path.join(opt.checkpoint_dir, opt.name, 'dis_model_final.pth'))
save_checkpoint(tocg, os.path.join(opt.checkpoint_dir, opt.name, 'tocg_model_final.pth'))
print("Finished training %s!" % opt.name)
if __name__ == "__main__":
main()