Ubaida10 commited on
Commit
d09129d
·
verified ·
1 Parent(s): 8b261fe

Upload cp_dataset_test.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. cp_dataset_test.py +266 -0
cp_dataset_test.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.utils.data as data
3
+ import torchvision.transforms as transforms
4
+
5
+ from PIL import Image, ImageDraw
6
+
7
+ import os.path as osp
8
+ import numpy as np
9
+ import json
10
+
11
+
12
+ class CPDatasetTest(data.Dataset):
13
+ """
14
+ Test Dataset for CP-VTON.
15
+ """
16
+ def __init__(self, opt):
17
+ super(CPDatasetTest, self).__init__()
18
+ # base setting
19
+ self.opt = opt
20
+ self.root = opt.dataroot
21
+ self.datamode = opt.datamode # train or test or self-defined
22
+ self.data_list = opt.data_list
23
+ self.fine_height = opt.fine_height
24
+ self.fine_width = opt.fine_width
25
+ self.semantic_nc = opt.semantic_nc
26
+ self.data_path = osp.join(opt.dataroot, opt.datamode)
27
+ self.transform = transforms.Compose([ \
28
+ transforms.ToTensor(), \
29
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
30
+
31
+ # load data list
32
+ im_names = []
33
+ c_names = []
34
+ with open(osp.join(opt.dataroot, opt.data_list), 'r') as f:
35
+ for line in f.readlines():
36
+ im_name, c_name = line.strip().split()
37
+ im_names.append(im_name)
38
+ c_names.append(c_name)
39
+
40
+ self.im_names = im_names
41
+ self.c_names = dict()
42
+ self.c_names['paired'] = im_names
43
+ self.c_names['unpaired'] = c_names
44
+
45
+ def name(self):
46
+ return "CPDataset"
47
+
48
+ def get_agnostic(self, im, im_parse, pose_data):
49
+ parse_array = np.array(im_parse)
50
+ parse_head = ((parse_array == 4).astype(np.float32) +
51
+ (parse_array == 13).astype(np.float32))
52
+ parse_lower = ((parse_array == 9).astype(np.float32) +
53
+ (parse_array == 12).astype(np.float32) +
54
+ (parse_array == 16).astype(np.float32) +
55
+ (parse_array == 17).astype(np.float32) +
56
+ (parse_array == 18).astype(np.float32) +
57
+ (parse_array == 19).astype(np.float32))
58
+
59
+ agnostic = im.copy()
60
+ agnostic_draw = ImageDraw.Draw(agnostic)
61
+
62
+ length_a = np.linalg.norm(pose_data[5] - pose_data[2])
63
+ length_b = np.linalg.norm(pose_data[12] - pose_data[9])
64
+ point = (pose_data[9] + pose_data[12]) / 2
65
+ pose_data[9] = point + (pose_data[9] - point) / length_b * length_a
66
+ pose_data[12] = point + (pose_data[12] - point) / length_b * length_a
67
+
68
+ r = int(length_a / 16) + 1
69
+
70
+ # mask torso
71
+ for i in [9, 12]:
72
+ pointx, pointy = pose_data[i]
73
+ agnostic_draw.ellipse((pointx-r*3, pointy-r*6, pointx+r*3, pointy+r*6), 'gray', 'gray')
74
+ agnostic_draw.line([tuple(pose_data[i]) for i in [2, 9]], 'gray', width=r*6)
75
+ agnostic_draw.line([tuple(pose_data[i]) for i in [5, 12]], 'gray', width=r*6)
76
+ agnostic_draw.line([tuple(pose_data[i]) for i in [9, 12]], 'gray', width=r*12)
77
+ agnostic_draw.polygon([tuple(pose_data[i]) for i in [2, 5, 12, 9]], 'gray', 'gray')
78
+
79
+ # mask neck
80
+ pointx, pointy = pose_data[1]
81
+ agnostic_draw.rectangle((pointx-r*5, pointy-r*9, pointx+r*5, pointy), 'gray', 'gray')
82
+
83
+ # mask arms
84
+ agnostic_draw.line([tuple(pose_data[i]) for i in [2, 5]], 'gray', width=r*12)
85
+ for i in [2, 5]:
86
+ pointx, pointy = pose_data[i]
87
+ agnostic_draw.ellipse((pointx-r*5, pointy-r*6, pointx+r*5, pointy+r*6), 'gray', 'gray')
88
+ for i in [3, 4, 6, 7]:
89
+ if (pose_data[i-1, 0] == 0.0 and pose_data[i-1, 1] == 0.0) or (pose_data[i, 0] == 0.0 and pose_data[i, 1] == 0.0):
90
+ continue
91
+ agnostic_draw.line([tuple(pose_data[j]) for j in [i - 1, i]], 'gray', width=r*10)
92
+ pointx, pointy = pose_data[i]
93
+ agnostic_draw.ellipse((pointx-r*5, pointy-r*5, pointx+r*5, pointy+r*5), 'gray', 'gray')
94
+
95
+ for parse_id, pose_ids in [(14, [5, 6, 7]), (15, [2, 3, 4])]:
96
+ mask_arm = Image.new('L', (768, 1024), 'white')
97
+ mask_arm_draw = ImageDraw.Draw(mask_arm)
98
+ pointx, pointy = pose_data[pose_ids[0]]
99
+ mask_arm_draw.ellipse((pointx-r*5, pointy-r*6, pointx+r*5, pointy+r*6), 'black', 'black')
100
+ for i in pose_ids[1:]:
101
+ if (pose_data[i-1, 0] == 0.0 and pose_data[i-1, 1] == 0.0) or (pose_data[i, 0] == 0.0 and pose_data[i, 1] == 0.0):
102
+ continue
103
+ mask_arm_draw.line([tuple(pose_data[j]) for j in [i - 1, i]], 'black', width=r*10)
104
+ pointx, pointy = pose_data[i]
105
+ if i != pose_ids[-1]:
106
+ mask_arm_draw.ellipse((pointx-r*5, pointy-r*5, pointx+r*5, pointy+r*5), 'black', 'black')
107
+ mask_arm_draw.ellipse((pointx-r*4, pointy-r*4, pointx+r*4, pointy+r*4), 'black', 'black')
108
+
109
+ parse_arm = (np.array(mask_arm) / 255) * (parse_array == parse_id).astype(np.float32)
110
+ agnostic.paste(im, None, Image.fromarray(np.uint8(parse_arm * 255), 'L'))
111
+
112
+ agnostic.paste(im, None, Image.fromarray(np.uint8(parse_head * 255), 'L'))
113
+ agnostic.paste(im, None, Image.fromarray(np.uint8(parse_lower * 255), 'L'))
114
+ return agnostic
115
+
116
+ def __getitem__(self, index):
117
+ im_name = self.im_names[index]
118
+ c_name = {}
119
+ c = {}
120
+ cm = {}
121
+ for key in self.c_names:
122
+ c_name[key] = self.c_names[key][index]
123
+ c[key] = Image.open(osp.join(self.data_path, 'cloth', c_name[key])).convert('RGB')
124
+ c[key] = transforms.Resize(self.fine_width, interpolation=2)(c[key])
125
+ cm[key] = Image.open(osp.join(self.data_path, 'cloth-mask', c_name[key]))
126
+ cm[key] = transforms.Resize(self.fine_width, interpolation=0)(cm[key])
127
+
128
+ c[key] = self.transform(c[key]) # [-1,1]
129
+ cm_array = np.array(cm[key])
130
+ cm_array = (cm_array >= 128).astype(np.float32)
131
+ cm[key] = torch.from_numpy(cm_array) # [0,1]
132
+ cm[key].unsqueeze_(0)
133
+
134
+ # person image
135
+ im_pil_big = Image.open(osp.join(self.data_path, 'image', im_name))
136
+ im_pil = transforms.Resize(self.fine_width, interpolation=2)(im_pil_big)
137
+
138
+ im = self.transform(im_pil)
139
+
140
+ # load parsing image
141
+ parse_name = im_name.replace('.jpg', '.png')
142
+ im_parse_pil_big = Image.open(osp.join(self.data_path, 'image-parse-v3', parse_name))
143
+ im_parse_pil = transforms.Resize(self.fine_width, interpolation=0)(im_parse_pil_big)
144
+ parse = torch.from_numpy(np.array(im_parse_pil)[None]).long()
145
+ im_parse = self.transform(im_parse_pil.convert('RGB'))
146
+
147
+ labels = {
148
+ 0: ['background', [0, 10]],
149
+ 1: ['hair', [1, 2]],
150
+ 2: ['face', [4, 13]],
151
+ 3: ['upper', [5, 6, 7]],
152
+ 4: ['bottom', [9, 12]],
153
+ 5: ['left_arm', [14]],
154
+ 6: ['right_arm', [15]],
155
+ 7: ['left_leg', [16]],
156
+ 8: ['right_leg', [17]],
157
+ 9: ['left_shoe', [18]],
158
+ 10: ['right_shoe', [19]],
159
+ 11: ['socks', [8]],
160
+ 12: ['noise', [3, 11]]
161
+ }
162
+
163
+ parse_map = torch.FloatTensor(20, self.fine_height, self.fine_width).zero_()
164
+ parse_map = parse_map.scatter_(0, parse, 1.0)
165
+ new_parse_map = torch.FloatTensor(self.semantic_nc, self.fine_height, self.fine_width).zero_()
166
+
167
+ for i in range(len(labels)):
168
+ for label in labels[i][1]:
169
+ new_parse_map[i] += parse_map[label]
170
+
171
+ parse_onehot = torch.FloatTensor(1, self.fine_height, self.fine_width).zero_()
172
+ for i in range(len(labels)):
173
+ for label in labels[i][1]:
174
+ parse_onehot[0] += parse_map[label] * i
175
+
176
+ # load image-parse-agnostic
177
+ image_parse_agnostic = Image.open(osp.join(self.data_path, 'image-parse-agnostic-v3.2', parse_name))
178
+ image_parse_agnostic = transforms.Resize(self.fine_width, interpolation=0)(image_parse_agnostic)
179
+ parse_agnostic = torch.from_numpy(np.array(image_parse_agnostic)[None]).long()
180
+ image_parse_agnostic = self.transform(image_parse_agnostic.convert('RGB'))
181
+
182
+ parse_agnostic_map = torch.FloatTensor(20, self.fine_height, self.fine_width).zero_()
183
+ parse_agnostic_map = parse_agnostic_map.scatter_(0, parse_agnostic, 1.0)
184
+ new_parse_agnostic_map = torch.FloatTensor(self.semantic_nc, self.fine_height, self.fine_width).zero_()
185
+ for i in range(len(labels)):
186
+ for label in labels[i][1]:
187
+ new_parse_agnostic_map[i] += parse_agnostic_map[label]
188
+
189
+
190
+ # parse cloth & parse cloth mask
191
+ pcm = new_parse_map[3:4]
192
+ im_c = im * pcm + (1 - pcm)
193
+
194
+ # load pose points
195
+ pose_name = im_name.replace('.jpg', '_rendered.png')
196
+ pose_map = Image.open(osp.join(self.data_path, 'openpose_img', pose_name))
197
+ pose_map = transforms.Resize(self.fine_width, interpolation=2)(pose_map)
198
+ pose_map = self.transform(pose_map) # [-1,1]
199
+
200
+ pose_name = im_name.replace('.jpg', '_keypoints.json')
201
+ with open(osp.join(self.data_path, 'openpose_json', pose_name), 'r') as f:
202
+ pose_label = json.load(f)
203
+ pose_data = pose_label['people'][0]['pose_keypoints_2d']
204
+ pose_data = np.array(pose_data)
205
+ pose_data = pose_data.reshape((-1, 3))[:, :2]
206
+
207
+
208
+ # load densepose
209
+ densepose_name = im_name.replace('image', 'image-densepose')
210
+ densepose_map = Image.open(osp.join(self.data_path, 'image-densepose', densepose_name))
211
+ densepose_map = transforms.Resize(self.fine_width, interpolation=2)(densepose_map)
212
+ densepose_map = self.transform(densepose_map) # [-1,1]
213
+ agnostic = self.get_agnostic(im_pil_big, im_parse_pil_big, pose_data)
214
+ agnostic = transforms.Resize(self.fine_width, interpolation=2)(agnostic)
215
+ agnostic = self.transform(agnostic)
216
+
217
+
218
+
219
+ result = {
220
+ 'c_name': c_name, # for visualization
221
+ 'im_name': im_name, # for visualization or ground truth
222
+ # intput 1 (clothfloww)
223
+ 'cloth': c, # for input
224
+ 'cloth_mask': cm, # for input
225
+ # intput 2 (segnet)
226
+ 'parse_agnostic': new_parse_agnostic_map,
227
+ 'densepose': densepose_map,
228
+ 'pose': pose_map, # for conditioning
229
+ # GT
230
+ 'parse_onehot' : parse_onehot, # Cross Entropy
231
+ 'parse': new_parse_map, # GAN Loss real
232
+ 'pcm': pcm, # L1 Loss & vis
233
+ 'parse_cloth': im_c, # VGG Loss & vis
234
+ # visualization
235
+ 'image': im, # for visualization
236
+ 'agnostic' : agnostic
237
+ }
238
+
239
+ return result
240
+
241
+ def __len__(self):
242
+ return len(self.im_names)
243
+
244
+
245
+ class CPDataLoader(object):
246
+ def __init__(self, opt, dataset):
247
+ super(CPDataLoader, self).__init__()
248
+ if opt.shuffle :
249
+ train_sampler = torch.utils.data.sampler.RandomSampler(dataset)
250
+ else:
251
+ train_sampler = None
252
+
253
+ self.data_loader = torch.utils.data.DataLoader(
254
+ dataset, batch_size=opt.batch_size, shuffle=(train_sampler is None),
255
+ num_workers=opt.workers, pin_memory=True, drop_last=True, sampler=train_sampler)
256
+ self.dataset = dataset
257
+ self.data_iter = self.data_loader.__iter__()
258
+
259
+ def next_batch(self):
260
+ try:
261
+ batch = self.data_iter.__next__()
262
+ except StopIteration:
263
+ self.data_iter = self.data_loader.__iter__()
264
+ batch = self.data_iter.__next__()
265
+
266
+ return batch