Upload networks.py with huggingface_hub
Browse files- networks.py +545 -0
networks.py
ADDED
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
from torchvision import models
|
6 |
+
import os
|
7 |
+
from torch.nn.utils import spectral_norm
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
import functools
|
11 |
+
|
12 |
+
|
13 |
+
class ConditionGenerator(nn.Module):
|
14 |
+
def __init__(self, opt, input1_nc, input2_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, num_layers=5):
|
15 |
+
super(ConditionGenerator, self).__init__()
|
16 |
+
self.warp_feature = opt.warp_feature
|
17 |
+
self.out_layer_opt = opt.out_layer
|
18 |
+
|
19 |
+
if num_layers == 5:
|
20 |
+
self.ClothEncoder = nn.Sequential(
|
21 |
+
ResBlock(input1_nc, ngf, norm_layer=norm_layer, scale='down'), # 256
|
22 |
+
ResBlock(ngf, ngf*2, norm_layer=norm_layer, scale='down'), # 128
|
23 |
+
ResBlock(ngf*2, ngf*4, norm_layer=norm_layer, scale='down'), # 64
|
24 |
+
ResBlock(ngf*4, ngf * 4, norm_layer=norm_layer, scale='down'), # 32
|
25 |
+
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down'), # 16
|
26 |
+
)
|
27 |
+
|
28 |
+
self.PoseEncoder = nn.Sequential(
|
29 |
+
ResBlock(input2_nc, ngf, norm_layer=norm_layer, scale='down'),
|
30 |
+
ResBlock(ngf, ngf * 2, norm_layer=norm_layer, scale='down'),
|
31 |
+
ResBlock(ngf * 2, ngf*4, norm_layer=norm_layer, scale='down'),
|
32 |
+
ResBlock(ngf*4, ngf * 4, norm_layer=norm_layer, scale='down'),
|
33 |
+
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down'),
|
34 |
+
)
|
35 |
+
|
36 |
+
if opt.warp_feature == 'T1':
|
37 |
+
# in_nc -> skip connection + T1, T2 channel
|
38 |
+
self.SegDecoder = nn.Sequential(
|
39 |
+
ResBlock(ngf * 8, ngf * 4, norm_layer=norm_layer, scale='up'), # 16
|
40 |
+
ResBlock(ngf * 4 * 2 + ngf * 4 , ngf * 4, norm_layer=norm_layer, scale='up'), # 32
|
41 |
+
ResBlock(ngf * 4 * 2 + ngf * 4, ngf * 2, norm_layer=norm_layer, scale='up'), # 64
|
42 |
+
ResBlock(ngf * 2 * 2 + ngf * 4, ngf, norm_layer=norm_layer, scale='up'), # 128
|
43 |
+
ResBlock(ngf * 1 * 2 + ngf * 4, ngf, norm_layer=norm_layer, scale='up'), # 256
|
44 |
+
)
|
45 |
+
|
46 |
+
# Cloth Conv 1x1
|
47 |
+
self.conv1 = nn.Sequential(
|
48 |
+
nn.Conv2d(ngf, ngf * 4, kernel_size=1, bias=True),
|
49 |
+
nn.Conv2d(ngf * 2, ngf * 4, kernel_size=1, bias=True),
|
50 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
51 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
52 |
+
)
|
53 |
+
|
54 |
+
# Person Conv 1x1
|
55 |
+
self.conv2 = nn.Sequential(
|
56 |
+
nn.Conv2d(ngf, ngf * 4, kernel_size=1, bias=True),
|
57 |
+
nn.Conv2d(ngf * 2, ngf * 4, kernel_size=1, bias=True),
|
58 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
59 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
60 |
+
)
|
61 |
+
|
62 |
+
self.flow_conv = nn.ModuleList([
|
63 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
64 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
65 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
66 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
67 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
self.bottleneck = nn.Sequential(
|
72 |
+
nn.Sequential(nn.Conv2d(ngf * 4, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
|
73 |
+
nn.Sequential(nn.Conv2d(ngf * 4, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
|
74 |
+
nn.Sequential(nn.Conv2d(ngf * 2, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True) , nn.ReLU()),
|
75 |
+
nn.Sequential(nn.Conv2d(ngf, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
|
76 |
+
)
|
77 |
+
|
78 |
+
if num_layers == 6:
|
79 |
+
self.ClothEncoder = nn.Sequential(
|
80 |
+
ResBlock(input1_nc, ngf, norm_layer=norm_layer, scale='down'), # 512
|
81 |
+
ResBlock(ngf, ngf*2, norm_layer=norm_layer, scale='down'), # 256
|
82 |
+
ResBlock(ngf*2, ngf*4, norm_layer=norm_layer, scale='down'), # 128
|
83 |
+
ResBlock(ngf*4, ngf * 4, norm_layer=norm_layer, scale='down'), # 64
|
84 |
+
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down'), # 32
|
85 |
+
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down'), # 16
|
86 |
+
)
|
87 |
+
|
88 |
+
self.PoseEncoder = nn.Sequential(
|
89 |
+
ResBlock(input2_nc, ngf, norm_layer=norm_layer, scale='down'),
|
90 |
+
ResBlock(ngf, ngf * 2, norm_layer=norm_layer, scale='down'),
|
91 |
+
ResBlock(ngf * 2, ngf*4, norm_layer=norm_layer, scale='down'),
|
92 |
+
ResBlock(ngf*4, ngf * 4, norm_layer=norm_layer, scale='down'),
|
93 |
+
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down'),
|
94 |
+
ResBlock(ngf * 4, ngf * 4, norm_layer=norm_layer, scale='down'),
|
95 |
+
)
|
96 |
+
|
97 |
+
if opt.warp_feature == 'T1':
|
98 |
+
# in_nc -> skip connection + T1, T2 channel
|
99 |
+
self.SegDecoder = nn.Sequential(
|
100 |
+
ResBlock(ngf * 8, ngf * 4, norm_layer=norm_layer, scale='up'), # 16
|
101 |
+
ResBlock(ngf * 4 * 2 + ngf * 4 , ngf * 4, norm_layer=norm_layer, scale='up'), # 32
|
102 |
+
ResBlock(ngf * 4 * 2 + ngf * 4 , ngf * 4, norm_layer=norm_layer, scale='up'), # 64
|
103 |
+
ResBlock(ngf * 4 * 2 + ngf * 4, ngf * 2, norm_layer=norm_layer, scale='up'), # 128
|
104 |
+
ResBlock(ngf * 2 * 2 + ngf * 4, ngf, norm_layer=norm_layer, scale='up'), # 256
|
105 |
+
ResBlock(ngf * 1 * 2 + ngf * 4, ngf, norm_layer=norm_layer, scale='up'), # 512
|
106 |
+
)
|
107 |
+
|
108 |
+
# Cloth Conv 1x1
|
109 |
+
self.conv1 = nn.Sequential(
|
110 |
+
nn.Conv2d(ngf, ngf * 4, kernel_size=1, bias=True),
|
111 |
+
nn.Conv2d(ngf * 2, ngf * 4, kernel_size=1, bias=True),
|
112 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
113 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
114 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
115 |
+
)
|
116 |
+
|
117 |
+
# Person Conv 1x1
|
118 |
+
self.conv2 = nn.Sequential(
|
119 |
+
nn.Conv2d(ngf, ngf * 4, kernel_size=1, bias=True),
|
120 |
+
nn.Conv2d(ngf * 2, ngf * 4, kernel_size=1, bias=True),
|
121 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
122 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
123 |
+
nn.Conv2d(ngf * 4, ngf * 4, kernel_size=1, bias=True),
|
124 |
+
)
|
125 |
+
|
126 |
+
self.flow_conv = nn.ModuleList([
|
127 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
128 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
129 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
130 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
131 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
132 |
+
nn.Conv2d(ngf * 8, 2, kernel_size=3, stride=1, padding=1, bias=True),
|
133 |
+
]
|
134 |
+
)
|
135 |
+
|
136 |
+
self.bottleneck = nn.Sequential(
|
137 |
+
nn.Sequential(nn.Conv2d(ngf * 4, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
|
138 |
+
nn.Sequential(nn.Conv2d(ngf * 4, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
|
139 |
+
nn.Sequential(nn.Conv2d(ngf * 4, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
|
140 |
+
nn.Sequential(nn.Conv2d(ngf * 2, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True) , nn.ReLU()),
|
141 |
+
nn.Sequential(nn.Conv2d(ngf, ngf * 4, kernel_size=3, stride=1, padding=1, bias=True), nn.ReLU()),
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
self.conv = ResBlock(ngf * 4, ngf * 8, norm_layer=norm_layer, scale='same')
|
146 |
+
|
147 |
+
if opt.out_layer == 'relu':
|
148 |
+
self.out_layer = ResBlock(ngf + ngf, output_nc, norm_layer=norm_layer, scale='same')
|
149 |
+
|
150 |
+
self.residual_sequential_flow_list = nn.Sequential(
|
151 |
+
nn.Sequential(nn.Conv3d(ngf * 8, 3, kernel_size=3, stride=1, padding=1, bias=True)),
|
152 |
+
)
|
153 |
+
self.out_layer_input1_resblk = ResBlock(input1_nc + input2_nc, ngf, norm_layer=norm_layer, scale='same')
|
154 |
+
|
155 |
+
self.num_layers = num_layers
|
156 |
+
|
157 |
+
def normalize(self, x):
|
158 |
+
return x
|
159 |
+
|
160 |
+
def forward(self, input1, input2, upsample='bilinear'):
|
161 |
+
E1_list = []
|
162 |
+
E2_list = []
|
163 |
+
flow_list_tvob = []
|
164 |
+
flow_list_taco = []
|
165 |
+
layers_max_idx = self.num_layers - 1
|
166 |
+
|
167 |
+
# Feature Pyramid Network
|
168 |
+
for i in range(self.num_layers):
|
169 |
+
if i == 0:
|
170 |
+
E1_list.append(self.ClothEncoder[i](input1))
|
171 |
+
E2_list.append(self.PoseEncoder[i](input2))
|
172 |
+
else:
|
173 |
+
E1_list.append(self.ClothEncoder[i](E1_list[i - 1]))
|
174 |
+
E2_list.append(self.PoseEncoder[i](E2_list[i - 1]))
|
175 |
+
|
176 |
+
# Compute Clothflow
|
177 |
+
for i in range(self.num_layers):
|
178 |
+
N, _, iH, iW = E1_list[layers_max_idx - i].size()
|
179 |
+
grid = make_grid(N, iH, iW)
|
180 |
+
|
181 |
+
if i == 0:
|
182 |
+
T1 = E1_list[layers_max_idx - i] # (ngf * 4) x 8 x 6
|
183 |
+
T2 = E2_list[layers_max_idx - i]
|
184 |
+
E4 = torch.cat([T1, T2], 1)
|
185 |
+
|
186 |
+
flow = self.flow_conv[i](self.normalize(E4)).permute(0, 2, 3, 1)
|
187 |
+
flow_list_tvob.append(flow)
|
188 |
+
|
189 |
+
x = self.conv(T2)
|
190 |
+
x = self.SegDecoder[i](x)
|
191 |
+
|
192 |
+
else:
|
193 |
+
T1 = F.interpolate(T1, scale_factor=2, mode=upsample) + self.conv1[layers_max_idx - i](E1_list[layers_max_idx - i])
|
194 |
+
T2 = F.interpolate(T2, scale_factor=2, mode=upsample) + self.conv2[layers_max_idx - i](E2_list[layers_max_idx - i])
|
195 |
+
|
196 |
+
flow = F.interpolate(flow_list_tvob[i - 1].permute(0, 3, 1, 2), scale_factor=2, mode=upsample).permute(0, 2, 3, 1) # upsample n-1 flow
|
197 |
+
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((iW/2 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((iH/2 - 1.0) / 2.0)], 3)
|
198 |
+
warped_T1 = F.grid_sample(T1, flow_norm + grid, padding_mode='border')
|
199 |
+
|
200 |
+
flow = flow + self.flow_conv[i](self.normalize(torch.cat([warped_T1, self.bottleneck[i-1](x)], 1))).permute(0, 2, 3, 1) # F(n)
|
201 |
+
flow_list_tvob.append(flow)
|
202 |
+
|
203 |
+
# TACO layer of SD-VITON
|
204 |
+
if i == layers_max_idx:
|
205 |
+
## Eq.10 of SD-VITON
|
206 |
+
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((iW - 1.0) / 2.0), flow[:, :, :, 1:2] / ((iH - 1.0) / 2.0)], 3)
|
207 |
+
warped_T1 = F.grid_sample(T1, flow_norm + grid, padding_mode='border')
|
208 |
+
input_3d_flow_out = self.normalize(torch.cat([warped_T1, T2], 1)).unsqueeze(2)
|
209 |
+
flow_out = self.residual_sequential_flow_list[0](torch.cat((input_3d_flow_out, torch.zeros_like(input_3d_flow_out).cuda()), dim=2)).permute(0,2,3,4,1)
|
210 |
+
flow_list_taco.append(flow_out)
|
211 |
+
|
212 |
+
if self.warp_feature == 'T1':
|
213 |
+
x = self.SegDecoder[i](torch.cat([x, E2_list[layers_max_idx-i], warped_T1], 1))
|
214 |
+
|
215 |
+
## Eq.11 of SD-VITON
|
216 |
+
N, _, iH, iW = input1.size()
|
217 |
+
grid = make_grid(N, iH, iW)
|
218 |
+
grid_3d = make_grid_3d(N, iH, iW)
|
219 |
+
|
220 |
+
flow_tvob = F.interpolate(flow_list_tvob[-1].permute(0, 3, 1, 2), scale_factor=2, mode=upsample).permute(0, 2, 3, 1)
|
221 |
+
flow_tvob_norm = torch.cat([flow_tvob[:, :, :, 0:1] / ((iW/2 - 1.0) / 2.0), flow_tvob[:, :, :, 1:2] / ((iH/2 - 1.0) / 2.0)], 3)
|
222 |
+
warped_input1_tvob = F.grid_sample(input1, flow_tvob_norm + grid, padding_mode='border')
|
223 |
+
|
224 |
+
flow_taco = F.interpolate(flow_list_taco[-1].permute(0, 4, 1, 2, 3), scale_factor=(1,2,2), mode='trilinear').permute(0, 2, 3, 4, 1)
|
225 |
+
flow_taco_norm = torch.cat([flow_taco[:, :, :, :, 0:1] / ((iW/2 - 1.0) / 2.0), flow_taco[:, :, :, :, 1:2] / ((iH/2 - 1.0) / 2.0), flow_taco[:, :, :, :, 2:3]], 4)
|
226 |
+
warped_input1_tvob = warped_input1_tvob.unsqueeze(2)
|
227 |
+
warped_input1_taco = F.grid_sample(torch.cat((warped_input1_tvob, torch.zeros_like(warped_input1_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
|
228 |
+
warped_input1_taco_non_roi = warped_input1_taco[:,:,1,:,:]
|
229 |
+
warped_input1_taco_roi = warped_input1_taco[:,:,0,:,:]
|
230 |
+
warped_input1_tvob = warped_input1_tvob[:,:,0,:,:]
|
231 |
+
|
232 |
+
out_inputs_resblk = self.out_layer_input1_resblk(torch.cat([input2, warped_input1_taco_roi], 1))
|
233 |
+
|
234 |
+
x = self.out_layer(torch.cat([x, out_inputs_resblk], 1))
|
235 |
+
|
236 |
+
warped_c_tvob = warped_input1_tvob[:, :-1, :, :]
|
237 |
+
warped_cm_tvob = warped_input1_tvob[:, -1:, :, :]
|
238 |
+
|
239 |
+
warped_c_taco_roi = warped_input1_taco_roi[:, :-1, :, :]
|
240 |
+
warped_cm_taco_roi = warped_input1_taco_roi[:, -1:, :, :]
|
241 |
+
|
242 |
+
warped_c_taco_non_roi = warped_input1_taco_non_roi[:,:-1,:,:]
|
243 |
+
warped_cm_taco_non_roi = warped_input1_taco_non_roi[:,-1:,:,:]
|
244 |
+
|
245 |
+
return flow_list_taco, x, warped_c_taco_roi, warped_cm_taco_roi, flow_list_tvob, warped_c_tvob, warped_cm_tvob
|
246 |
+
|
247 |
+
def make_grid_3d(N, iH, iW):
|
248 |
+
grid_x = torch.linspace(-1.0, 1.0, iW).view(1, 1, 1, iW, 1).expand(N, 2, iH, -1, -1)
|
249 |
+
grid_y = torch.linspace(-1.0, 1.0, iH).view(1, 1, iH, 1, 1).expand(N, 2, -1, iW, -1)
|
250 |
+
grid_z = torch.linspace(-1.0, 1.0, 2).view(1, 2, 1, 1, 1).expand(N, -1, iH, iW, -1)
|
251 |
+
grid = torch.cat([grid_x, grid_y, grid_z], 4).cuda()
|
252 |
+
return grid
|
253 |
+
|
254 |
+
def make_grid(N, iH, iW):
|
255 |
+
grid_x = torch.linspace(-1.0, 1.0, iW).view(1, 1, iW, 1).expand(N, iH, -1, -1)
|
256 |
+
grid_y = torch.linspace(-1.0, 1.0, iH).view(1, iH, 1, 1).expand(N, -1, iW, -1)
|
257 |
+
grid = torch.cat([grid_x, grid_y], 3).cuda()
|
258 |
+
return grid
|
259 |
+
|
260 |
+
class ResBlock(nn.Module):
|
261 |
+
def __init__(self, in_nc, out_nc, scale='down', norm_layer=nn.BatchNorm2d):
|
262 |
+
super(ResBlock, self).__init__()
|
263 |
+
use_bias = norm_layer == nn.InstanceNorm2d
|
264 |
+
assert scale in ['up', 'down', 'same'], "ResBlock scale must be in 'up' 'down' 'same'"
|
265 |
+
|
266 |
+
if scale == 'same':
|
267 |
+
self.scale = nn.Conv2d(in_nc, out_nc, kernel_size=1, bias=True)
|
268 |
+
if scale == 'up':
|
269 |
+
self.scale = nn.Sequential(
|
270 |
+
nn.Upsample(scale_factor=2, mode='bilinear'),
|
271 |
+
nn.Conv2d(in_nc, out_nc, kernel_size=1,bias=True)
|
272 |
+
)
|
273 |
+
if scale == 'down':
|
274 |
+
self.scale = nn.Conv2d(in_nc, out_nc, kernel_size=3, stride=2, padding=1, bias=use_bias)
|
275 |
+
|
276 |
+
self.block = nn.Sequential(
|
277 |
+
nn.Conv2d(out_nc, out_nc, kernel_size=3, stride=1, padding=1, bias=use_bias),
|
278 |
+
norm_layer(out_nc),
|
279 |
+
nn.ReLU(inplace=True),
|
280 |
+
nn.Conv2d(out_nc, out_nc, kernel_size=3, stride=1, padding=1, bias=use_bias),
|
281 |
+
norm_layer(out_nc)
|
282 |
+
)
|
283 |
+
self.relu = nn.ReLU(inplace=True)
|
284 |
+
|
285 |
+
def forward(self, x):
|
286 |
+
residual = self.scale(x)
|
287 |
+
return self.relu(residual + self.block(residual))
|
288 |
+
|
289 |
+
|
290 |
+
class Vgg19(nn.Module):
|
291 |
+
def __init__(self, requires_grad=False):
|
292 |
+
super(Vgg19, self).__init__()
|
293 |
+
vgg_pretrained_features = models.vgg19(pretrained=True).features
|
294 |
+
self.slice1 = torch.nn.Sequential()
|
295 |
+
self.slice2 = torch.nn.Sequential()
|
296 |
+
self.slice3 = torch.nn.Sequential()
|
297 |
+
self.slice4 = torch.nn.Sequential()
|
298 |
+
self.slice5 = torch.nn.Sequential()
|
299 |
+
for x in range(2):
|
300 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
301 |
+
for x in range(2, 7):
|
302 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
303 |
+
for x in range(7, 12):
|
304 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
305 |
+
for x in range(12, 21):
|
306 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
307 |
+
for x in range(21, 30):
|
308 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
309 |
+
if not requires_grad:
|
310 |
+
for param in self.parameters():
|
311 |
+
param.requires_grad = False
|
312 |
+
|
313 |
+
def forward(self, X):
|
314 |
+
h_relu1 = self.slice1(X)
|
315 |
+
h_relu2 = self.slice2(h_relu1)
|
316 |
+
h_relu3 = self.slice3(h_relu2)
|
317 |
+
h_relu4 = self.slice4(h_relu3)
|
318 |
+
h_relu5 = self.slice5(h_relu4)
|
319 |
+
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
|
320 |
+
return out
|
321 |
+
|
322 |
+
|
323 |
+
class VGGLoss(nn.Module):
|
324 |
+
def __init__(self, layids = None):
|
325 |
+
super(VGGLoss, self).__init__()
|
326 |
+
self.vgg = Vgg19()
|
327 |
+
self.vgg.cuda()
|
328 |
+
self.criterion = nn.L1Loss()
|
329 |
+
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]
|
330 |
+
self.layids = layids
|
331 |
+
|
332 |
+
def forward(self, x, y):
|
333 |
+
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
|
334 |
+
loss = 0
|
335 |
+
if self.layids is None:
|
336 |
+
self.layids = list(range(len(x_vgg)))
|
337 |
+
for i in self.layids:
|
338 |
+
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
|
339 |
+
return loss
|
340 |
+
|
341 |
+
|
342 |
+
class GANLoss(nn.Module):
|
343 |
+
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0,
|
344 |
+
tensor=torch.FloatTensor):
|
345 |
+
super(GANLoss, self).__init__()
|
346 |
+
self.real_label = target_real_label
|
347 |
+
self.fake_label = target_fake_label
|
348 |
+
self.real_label_var = None
|
349 |
+
self.fake_label_var = None
|
350 |
+
self.Tensor = tensor
|
351 |
+
if use_lsgan:
|
352 |
+
self.loss = nn.MSELoss()
|
353 |
+
else:
|
354 |
+
self.loss = nn.BCELoss()
|
355 |
+
|
356 |
+
def get_target_tensor(self, input, target_is_real):
|
357 |
+
if target_is_real:
|
358 |
+
create_label = ((self.real_label_var is None) or
|
359 |
+
(self.real_label_var.numel() != input.numel()))
|
360 |
+
if create_label:
|
361 |
+
real_tensor = self.Tensor(input.size()).fill_(self.real_label)
|
362 |
+
self.real_label_var = Variable(real_tensor, requires_grad=False)
|
363 |
+
target_tensor = self.real_label_var
|
364 |
+
else:
|
365 |
+
create_label = ((self.fake_label_var is None) or
|
366 |
+
(self.fake_label_var.numel() != input.numel()))
|
367 |
+
if create_label:
|
368 |
+
fake_tensor = self.Tensor(input.size()).fill_(self.fake_label)
|
369 |
+
self.fake_label_var = Variable(fake_tensor, requires_grad=False)
|
370 |
+
target_tensor = self.fake_label_var
|
371 |
+
return target_tensor
|
372 |
+
|
373 |
+
def __call__(self, input, target_is_real):
|
374 |
+
if isinstance(input[0], list):
|
375 |
+
loss = 0
|
376 |
+
for input_i in input:
|
377 |
+
pred = input_i[-1]
|
378 |
+
target_tensor = self.get_target_tensor(pred, target_is_real)
|
379 |
+
loss += self.loss(pred, target_tensor)
|
380 |
+
return loss
|
381 |
+
else:
|
382 |
+
target_tensor = self.get_target_tensor(input[-1], target_is_real)
|
383 |
+
return self.loss(input[-1], target_tensor)
|
384 |
+
|
385 |
+
|
386 |
+
class MultiscaleDiscriminator(nn.Module):
|
387 |
+
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,
|
388 |
+
use_sigmoid=False, num_D=3, getIntermFeat=False, Ddownx2=False, Ddropout=False, spectral=False):
|
389 |
+
super(MultiscaleDiscriminator, self).__init__()
|
390 |
+
self.num_D = num_D
|
391 |
+
self.n_layers = n_layers
|
392 |
+
self.getIntermFeat = getIntermFeat
|
393 |
+
self.Ddownx2 = Ddownx2
|
394 |
+
|
395 |
+
|
396 |
+
for i in range(num_D):
|
397 |
+
netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat, Ddropout, spectral=spectral)
|
398 |
+
if getIntermFeat:
|
399 |
+
for j in range(n_layers + 2):
|
400 |
+
setattr(self, 'scale' + str(i) + '_layer' + str(j), getattr(netD, 'model' + str(j)))
|
401 |
+
else:
|
402 |
+
setattr(self, 'layer' + str(i), netD.model)
|
403 |
+
|
404 |
+
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
|
405 |
+
|
406 |
+
def singleD_forward(self, model, input):
|
407 |
+
if self.getIntermFeat:
|
408 |
+
result = [input]
|
409 |
+
for i in range(len(model)):
|
410 |
+
result.append(model[i](result[-1]))
|
411 |
+
return result[1:]
|
412 |
+
else:
|
413 |
+
return [model(input)]
|
414 |
+
|
415 |
+
def forward(self, input):
|
416 |
+
num_D = self.num_D
|
417 |
+
|
418 |
+
result = []
|
419 |
+
if self.Ddownx2:
|
420 |
+
input_downsampled = self.downsample(input)
|
421 |
+
else:
|
422 |
+
input_downsampled = input
|
423 |
+
for i in range(num_D):
|
424 |
+
|
425 |
+
if self.getIntermFeat:
|
426 |
+
model = [getattr(self, 'scale' + str(num_D - 1 - i) + '_layer' + str(j)) for j in
|
427 |
+
range(self.n_layers + 2)]
|
428 |
+
else:
|
429 |
+
model = getattr(self, 'layer' + str(num_D - 1 - i))
|
430 |
+
result.append(self.singleD_forward(model, input_downsampled))
|
431 |
+
if i != (num_D - 1):
|
432 |
+
input_downsampled = self.downsample(input_downsampled)
|
433 |
+
return result
|
434 |
+
|
435 |
+
class NLayerDiscriminator(nn.Module):
|
436 |
+
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False, Ddropout=False, spectral=False):
|
437 |
+
super(NLayerDiscriminator, self).__init__()
|
438 |
+
self.getIntermFeat = getIntermFeat
|
439 |
+
self.n_layers = n_layers
|
440 |
+
self.spectral_norm = spectral_norm if spectral else lambda x: x
|
441 |
+
|
442 |
+
kw = 4
|
443 |
+
padw = int(np.ceil((kw - 1.0) / 2))
|
444 |
+
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]]
|
445 |
+
|
446 |
+
nf = ndf
|
447 |
+
for n in range(1, n_layers):
|
448 |
+
nf_prev = nf
|
449 |
+
nf = min(nf * 2, 512)
|
450 |
+
if Ddropout:
|
451 |
+
sequence += [[
|
452 |
+
self.spectral_norm(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw)),
|
453 |
+
norm_layer(nf), nn.LeakyReLU(0.2, True), nn.Dropout(0.5)
|
454 |
+
]]
|
455 |
+
else:
|
456 |
+
|
457 |
+
sequence += [[
|
458 |
+
self.spectral_norm(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw)),
|
459 |
+
norm_layer(nf), nn.LeakyReLU(0.2, True)
|
460 |
+
]]
|
461 |
+
|
462 |
+
nf_prev = nf
|
463 |
+
nf = min(nf * 2, 512)
|
464 |
+
sequence += [[
|
465 |
+
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
|
466 |
+
norm_layer(nf),
|
467 |
+
nn.LeakyReLU(0.2, True)
|
468 |
+
]]
|
469 |
+
|
470 |
+
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
|
471 |
+
|
472 |
+
if use_sigmoid:
|
473 |
+
sequence += [[nn.Sigmoid()]]
|
474 |
+
|
475 |
+
if getIntermFeat:
|
476 |
+
for n in range(len(sequence)):
|
477 |
+
setattr(self, 'model' + str(n), nn.Sequential(*sequence[n]))
|
478 |
+
else:
|
479 |
+
sequence_stream = []
|
480 |
+
for n in range(len(sequence)):
|
481 |
+
sequence_stream += sequence[n]
|
482 |
+
self.model = nn.Sequential(*sequence_stream)
|
483 |
+
|
484 |
+
def forward(self, input):
|
485 |
+
if self.getIntermFeat:
|
486 |
+
res = [input]
|
487 |
+
for n in range(self.n_layers + 2):
|
488 |
+
model = getattr(self, 'model' + str(n))
|
489 |
+
res.append(model(res[-1]))
|
490 |
+
return res[1:]
|
491 |
+
else:
|
492 |
+
return self.model(input)
|
493 |
+
|
494 |
+
|
495 |
+
def save_checkpoint(model, save_path):
|
496 |
+
if not os.path.exists(os.path.dirname(save_path)):
|
497 |
+
os.makedirs(os.path.dirname(save_path))
|
498 |
+
|
499 |
+
torch.save(model.cpu().state_dict(), save_path)
|
500 |
+
model.cuda()
|
501 |
+
|
502 |
+
def load_checkpoint(model, checkpoint_path):
|
503 |
+
if not os.path.exists(checkpoint_path):
|
504 |
+
print(" [*] checkpoint does not exist!")
|
505 |
+
return
|
506 |
+
print(" [*] Loading checkpoint from %s" % checkpoint_path)
|
507 |
+
state_dict = torch.load(checkpoint_path)
|
508 |
+
model_state_dict = model.state_dict()
|
509 |
+
|
510 |
+
# Remove keys that have shape mismatches
|
511 |
+
for key in list(state_dict.keys()):
|
512 |
+
if key in model_state_dict and state_dict[key].shape != model_state_dict[key].shape:
|
513 |
+
print(f"Removing {key} due to shape mismatch: {state_dict[key].shape} vs {model_state_dict[key].shape}")
|
514 |
+
del state_dict[key]
|
515 |
+
|
516 |
+
log = model.load_state_dict(state_dict, strict=False)
|
517 |
+
print(" [*] Load Success! log : ", log)
|
518 |
+
|
519 |
+
|
520 |
+
def weights_init(m):
|
521 |
+
classname = m.__class__.__name__
|
522 |
+
if classname.find('Conv2d') != -1:
|
523 |
+
m.weight.data.normal_(0.0, 0.02)
|
524 |
+
elif classname.find('BatchNorm2d') != -1:
|
525 |
+
m.weight.data.normal_(1.0, 0.02)
|
526 |
+
m.bias.data.fill_(0)
|
527 |
+
|
528 |
+
def get_norm_layer(norm_type='instance'):
|
529 |
+
if norm_type == 'batch':
|
530 |
+
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
|
531 |
+
elif norm_type == 'instance':
|
532 |
+
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
|
533 |
+
else:
|
534 |
+
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
|
535 |
+
return norm_layer
|
536 |
+
|
537 |
+
def define_D(input_nc, ndf=64, n_layers_D=3, norm='instance', use_sigmoid=False, num_D=2, getIntermFeat=False, gpu_ids=[], Ddownx2=False, Ddropout=False, spectral=False):
|
538 |
+
norm_layer = get_norm_layer(norm_type=norm)
|
539 |
+
netD = MultiscaleDiscriminator(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat, Ddownx2, Ddropout, spectral=spectral)
|
540 |
+
print(netD)
|
541 |
+
if len(gpu_ids) > 0:
|
542 |
+
assert (torch.cuda.is_available())
|
543 |
+
netD.cuda()
|
544 |
+
netD.apply(weights_init)
|
545 |
+
return netD
|