VincentVVVVV commited on
Commit
803c38e
·
verified ·
1 Parent(s): 9ce5345

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - funsd
9
+ model-index:
10
+ - name: layoutlm-funsd
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # layoutlm-funsd
18
+
19
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.7672
22
+ - Answer: {'precision': 0.7376681614349776, 'recall': 0.8133498145859085, 'f1': 0.7736625514403291, 'number': 809}
23
+ - Header: {'precision': 0.37857142857142856, 'recall': 0.44537815126050423, 'f1': 0.4092664092664093, 'number': 119}
24
+ - Question: {'precision': 0.8122109158186864, 'recall': 0.8244131455399061, 'f1': 0.8182665424044735, 'number': 1065}
25
+ - Overall Precision: 0.7520
26
+ - Overall Recall: 0.7973
27
+ - Overall F1: 0.7740
28
+ - Overall Accuracy: 0.8111
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 15
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.6896 | 1.0 | 19 | 1.4068 | {'precision': 0.0572737686139748, 'recall': 0.06180469715698393, 'f1': 0.05945303210463733, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4044834307992203, 'recall': 0.38967136150234744, 'f1': 0.3969392635102822, 'number': 1065} | 0.2449 | 0.2333 | 0.2390 | 0.4540 |
61
+ | 1.1462 | 2.0 | 38 | 0.8626 | {'precision': 0.5445075757575758, 'recall': 0.7107540173053152, 'f1': 0.6166219839142091, 'number': 809} | {'precision': 0.04878048780487805, 'recall': 0.01680672268907563, 'f1': 0.025, 'number': 119} | {'precision': 0.6331615120274914, 'recall': 0.692018779342723, 'f1': 0.661283086585913, 'number': 1065} | 0.5812 | 0.6593 | 0.6178 | 0.7285 |
62
+ | 0.7687 | 3.0 | 57 | 0.7051 | {'precision': 0.6217264791464597, 'recall': 0.792336217552534, 'f1': 0.6967391304347825, 'number': 809} | {'precision': 0.18421052631578946, 'recall': 0.11764705882352941, 'f1': 0.14358974358974358, 'number': 119} | {'precision': 0.6805084745762712, 'recall': 0.7539906103286385, 'f1': 0.7153674832962139, 'number': 1065} | 0.6375 | 0.7316 | 0.6813 | 0.7678 |
63
+ | 0.5961 | 4.0 | 76 | 0.6423 | {'precision': 0.6527918781725889, 'recall': 0.7948084054388134, 'f1': 0.7168338907469342, 'number': 809} | {'precision': 0.26785714285714285, 'recall': 0.25210084033613445, 'f1': 0.2597402597402597, 'number': 119} | {'precision': 0.7100949094046591, 'recall': 0.7727699530516432, 'f1': 0.7401079136690648, 'number': 1065} | 0.6631 | 0.7506 | 0.7042 | 0.7923 |
64
+ | 0.4739 | 5.0 | 95 | 0.6263 | {'precision': 0.7024972855591748, 'recall': 0.799752781211372, 'f1': 0.7479768786127167, 'number': 809} | {'precision': 0.33070866141732286, 'recall': 0.35294117647058826, 'f1': 0.34146341463414637, 'number': 119} | {'precision': 0.7435897435897436, 'recall': 0.8169014084507042, 'f1': 0.778523489932886, 'number': 1065} | 0.7029 | 0.7822 | 0.7404 | 0.8059 |
65
+ | 0.3893 | 6.0 | 114 | 0.6456 | {'precision': 0.6912681912681913, 'recall': 0.8220024721878862, 'f1': 0.7509881422924901, 'number': 809} | {'precision': 0.28169014084507044, 'recall': 0.33613445378151263, 'f1': 0.30651340996168586, 'number': 119} | {'precision': 0.768270944741533, 'recall': 0.8093896713615023, 'f1': 0.7882944673068131, 'number': 1065} | 0.7040 | 0.7863 | 0.7428 | 0.8050 |
66
+ | 0.3267 | 7.0 | 133 | 0.6813 | {'precision': 0.7297605473204105, 'recall': 0.7911001236093943, 'f1': 0.7591933570581256, 'number': 809} | {'precision': 0.33070866141732286, 'recall': 0.35294117647058826, 'f1': 0.34146341463414637, 'number': 119} | {'precision': 0.7810283687943262, 'recall': 0.8272300469483568, 'f1': 0.8034655722754217, 'number': 1065} | 0.7331 | 0.7842 | 0.7578 | 0.8019 |
67
+ | 0.2731 | 8.0 | 152 | 0.6628 | {'precision': 0.7153846153846154, 'recall': 0.8046971569839307, 'f1': 0.7574171029668412, 'number': 809} | {'precision': 0.3697478991596639, 'recall': 0.3697478991596639, 'f1': 0.3697478991596639, 'number': 119} | {'precision': 0.7877145438121048, 'recall': 0.8187793427230047, 'f1': 0.8029465930018417, 'number': 1065} | 0.7336 | 0.7863 | 0.7590 | 0.8137 |
68
+ | 0.2425 | 9.0 | 171 | 0.6992 | {'precision': 0.7209302325581395, 'recall': 0.8046971569839307, 'f1': 0.7605140186915887, 'number': 809} | {'precision': 0.3851851851851852, 'recall': 0.4369747899159664, 'f1': 0.4094488188976378, 'number': 119} | {'precision': 0.801980198019802, 'recall': 0.8366197183098592, 'f1': 0.8189338235294118, 'number': 1065} | 0.7417 | 0.7998 | 0.7697 | 0.8104 |
69
+ | 0.2145 | 10.0 | 190 | 0.7271 | {'precision': 0.7373167981961668, 'recall': 0.8084054388133498, 'f1': 0.7712264150943396, 'number': 809} | {'precision': 0.36075949367088606, 'recall': 0.4789915966386555, 'f1': 0.41155234657039713, 'number': 119} | {'precision': 0.8250950570342205, 'recall': 0.8150234741784037, 'f1': 0.8200283419933868, 'number': 1065} | 0.7530 | 0.7923 | 0.7721 | 0.8047 |
70
+ | 0.1882 | 11.0 | 209 | 0.7348 | {'precision': 0.7400681044267877, 'recall': 0.8059332509270705, 'f1': 0.7715976331360946, 'number': 809} | {'precision': 0.375, 'recall': 0.453781512605042, 'f1': 0.4106463878326997, 'number': 119} | {'precision': 0.8254716981132075, 'recall': 0.8215962441314554, 'f1': 0.8235294117647057, 'number': 1065} | 0.7583 | 0.7933 | 0.7754 | 0.8103 |
71
+ | 0.1668 | 12.0 | 228 | 0.7541 | {'precision': 0.7360178970917226, 'recall': 0.8133498145859085, 'f1': 0.7727539635936582, 'number': 809} | {'precision': 0.3984375, 'recall': 0.42857142857142855, 'f1': 0.41295546558704455, 'number': 119} | {'precision': 0.8007246376811594, 'recall': 0.8300469483568075, 'f1': 0.8151221761180267, 'number': 1065} | 0.7493 | 0.7993 | 0.7735 | 0.8097 |
72
+ | 0.1595 | 13.0 | 247 | 0.7616 | {'precision': 0.7370786516853932, 'recall': 0.8108776266996292, 'f1': 0.7722189523248971, 'number': 809} | {'precision': 0.38345864661654133, 'recall': 0.42857142857142855, 'f1': 0.4047619047619047, 'number': 119} | {'precision': 0.8153988868274582, 'recall': 0.8253521126760563, 'f1': 0.8203453103126458, 'number': 1065} | 0.7549 | 0.7958 | 0.7748 | 0.8122 |
73
+ | 0.1451 | 14.0 | 266 | 0.7638 | {'precision': 0.7361894024802705, 'recall': 0.8071693448702101, 'f1': 0.7700471698113207, 'number': 809} | {'precision': 0.375886524822695, 'recall': 0.44537815126050423, 'f1': 0.40769230769230774, 'number': 119} | {'precision': 0.8150557620817844, 'recall': 0.8234741784037559, 'f1': 0.8192433442316676, 'number': 1065} | 0.7524 | 0.7943 | 0.7728 | 0.8110 |
74
+ | 0.1449 | 15.0 | 285 | 0.7672 | {'precision': 0.7376681614349776, 'recall': 0.8133498145859085, 'f1': 0.7736625514403291, 'number': 809} | {'precision': 0.37857142857142856, 'recall': 0.44537815126050423, 'f1': 0.4092664092664093, 'number': 119} | {'precision': 0.8122109158186864, 'recall': 0.8244131455399061, 'f1': 0.8182665424044735, 'number': 1065} | 0.7520 | 0.7973 | 0.7740 | 0.8111 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.44.2
80
+ - Pytorch 2.4.1+cu121
81
+ - Datasets 2.21.0
82
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1725956688.layout-20240908-075832.34556.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3ef390952d126bc96632e7be3fa3e7c3a707acb4c1f0bb0a56976a803d59a555
3
- size 15088
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c667de16be05639a041de522bbd9f535d0dac8a8160958d4632298b12fd1a6c
3
+ size 16157
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6fd1a29144e77988c3f4df3c66257855906ca190656ae034d07195123d9bf13f
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eddc7a4974e5a3e1ad82d6c717392f47876236d0a3e61ee69d10b599c345e96
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff