Image-to-Video
Diffusers
Safetensors
Spanish
s2v
kelseye commited on
Commit
8a60f2d
·
verified ·
1 Parent(s): 62849eb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -142
README.md CHANGED
@@ -56,21 +56,6 @@ If your research or project builds upon [**Wan2.1**](https://github.com/Wan-Vide
56
 
57
 
58
  ## 📑 Todo List
59
- - Wan2.2 Text-to-Video
60
- - [x] Multi-GPU Inference code of the A14B and 14B models
61
- - [x] Checkpoints of the A14B and 14B models
62
- - [x] ComfyUI integration
63
- - [x] Diffusers integration
64
- - Wan2.2 Image-to-Video
65
- - [x] Multi-GPU Inference code of the A14B model
66
- - [x] Checkpoints of the A14B model
67
- - [x] ComfyUI integration
68
- - [x] Diffusers integration
69
- - Wan2.2 Text-Image-to-Video
70
- - [x] Multi-GPU Inference code of the 5B model
71
- - [x] Checkpoints of the 5B model
72
- - [x] ComfyUI integration
73
- - [x] Diffusers integration
74
  - Wan2.2-S2V Speech-to-Video
75
  - [x] Inference code of Wan2.2-S2V
76
  - [x] Checkpoints of Wan2.2-S2V-14B
@@ -105,143 +90,18 @@ pip install -r requirements.txt
105
 
106
 
107
 
108
- > 💡Note:
109
- > The TI2V-5B model supports 720P video generation at **24 FPS**.
110
-
111
-
112
  Download models using huggingface-cli:
113
  ``` sh
114
  pip install "huggingface_hub[cli]"
115
- huggingface-cli download Wan-AI/Wan2.2-T2V-A14B --local-dir ./Wan2.2-T2V-A14B
116
  ```
117
 
118
  Download models using modelscope-cli:
119
  ``` sh
120
  pip install modelscope
121
- modelscope download Wan-AI/Wan2.2-T2V-A14B --local_dir ./Wan2.2-T2V-A14B
122
- ```
123
-
124
- #### Run Text-to-Video Generation
125
-
126
- This repository supports the `Wan2.2-T2V-A14B` Text-to-Video model and can simultaneously support video generation at 480P and 720P resolutions.
127
-
128
-
129
- ##### (1) Without Prompt Extension
130
-
131
- To facilitate implementation, we will start with a basic version of the inference process that skips the [prompt extension](#2-using-prompt-extention) step.
132
-
133
- - Single-GPU inference
134
-
135
- ``` sh
136
- python generate.py --task t2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-T2V-A14B --offload_model True --convert_model_dtype --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
137
- ```
138
-
139
- > 💡 This command can run on a GPU with at least 80GB VRAM.
140
-
141
- > 💡If you encounter OOM (Out-of-Memory) issues, you can use the `--offload_model True`, `--convert_model_dtype` and `--t5_cpu` options to reduce GPU memory usage.
142
-
143
-
144
- - Multi-GPU inference using FSDP + DeepSpeed Ulysses
145
-
146
- We use [PyTorch FSDP](https://docs.pytorch.org/docs/stable/fsdp.html) and [DeepSpeed Ulysses](https://arxiv.org/abs/2309.14509) to accelerate inference.
147
-
148
-
149
- ``` sh
150
- torchrun --nproc_per_node=8 generate.py --task t2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-T2V-A14B --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
151
- ```
152
-
153
-
154
- ##### (2) Using Prompt Extension
155
-
156
- Extending the prompts can effectively enrich the details in the generated videos, further enhancing the video quality. Therefore, we recommend enabling prompt extension. We provide the following two methods for prompt extension:
157
-
158
- - Use the Dashscope API for extension.
159
- - Apply for a `dashscope.api_key` in advance ([EN](https://www.alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen) | [CN](https://help.aliyun.com/zh/model-studio/getting-started/first-api-call-to-qwen)).
160
- - Configure the environment variable `DASH_API_KEY` to specify the Dashscope API key. For users of Alibaba Cloud's international site, you also need to set the environment variable `DASH_API_URL` to 'https://dashscope-intl.aliyuncs.com/api/v1'. For more detailed instructions, please refer to the [dashscope document](https://www.alibabacloud.com/help/en/model-studio/developer-reference/use-qwen-by-calling-api?spm=a2c63.p38356.0.i1).
161
- - Use the `qwen-plus` model for text-to-video tasks and `qwen-vl-max` for image-to-video tasks.
162
- - You can modify the model used for extension with the parameter `--prompt_extend_model`. For example:
163
- ```sh
164
- DASH_API_KEY=your_key torchrun --nproc_per_node=8 generate.py --task t2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-T2V-A14B --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage" --use_prompt_extend --prompt_extend_method 'dashscope' --prompt_extend_target_lang 'zh'
165
- ```
166
-
167
- - Using a local model for extension.
168
-
169
- - By default, the Qwen model on HuggingFace is used for this extension. Users can choose Qwen models or other models based on the available GPU memory size.
170
- - For text-to-video tasks, you can use models like `Qwen/Qwen2.5-14B-Instruct`, `Qwen/Qwen2.5-7B-Instruct` and `Qwen/Qwen2.5-3B-Instruct`.
171
- - For image-to-video tasks, you can use models like `Qwen/Qwen2.5-VL-7B-Instruct` and `Qwen/Qwen2.5-VL-3B-Instruct`.
172
- - Larger models generally provide better extension results but require more GPU memory.
173
- - You can modify the model used for extension with the parameter `--prompt_extend_model` , allowing you to specify either a local model path or a Hugging Face model. For example:
174
-
175
- ``` sh
176
- torchrun --nproc_per_node=8 generate.py --task t2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-T2V-A14B --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage" --use_prompt_extend --prompt_extend_method 'local_qwen' --prompt_extend_target_lang 'zh'
177
- ```
178
-
179
-
180
- #### Run Image-to-Video Generation
181
-
182
- This repository supports the `Wan2.2-I2V-A14B` Image-to-Video model and can simultaneously support video generation at 480P and 720P resolutions.
183
-
184
-
185
- - Single-GPU inference
186
- ```sh
187
- python generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --offload_model True --convert_model_dtype --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
188
- ```
189
-
190
- > This command can run on a GPU with at least 80GB VRAM.
191
-
192
- > 💡For the Image-to-Video task, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image.
193
-
194
-
195
- - Multi-GPU inference using FSDP + DeepSpeed Ulysses
196
-
197
- ```sh
198
- torchrun --nproc_per_node=8 generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
199
- ```
200
-
201
- - Image-to-Video Generation without prompt
202
-
203
- ```sh
204
- DASH_API_KEY=your_key torchrun --nproc_per_node=8 generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --prompt '' --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --use_prompt_extend --prompt_extend_method 'dashscope'
205
- ```
206
-
207
- > 💡The model can generate videos solely from the input image. You can use prompt extension to generate prompt from the image.
208
-
209
- > The process of prompt extension can be referenced [here](#2-using-prompt-extention).
210
-
211
- #### Run Text-Image-to-Video Generation
212
-
213
- This repository supports the `Wan2.2-TI2V-5B` Text-Image-to-Video model and can support video generation at 720P resolutions.
214
-
215
-
216
- - Single-GPU Text-to-Video inference
217
- ```sh
218
- python generate.py --task ti2v-5B --size 1280*704 --ckpt_dir ./Wan2.2-TI2V-5B --offload_model True --convert_model_dtype --t5_cpu --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage"
219
- ```
220
-
221
- > 💡Unlike other tasks, the 720P resolution of the Text-Image-to-Video task is `1280*704` or `704*1280`.
222
-
223
- > This command can run on a GPU with at least 24GB VRAM (e.g, RTX 4090 GPU).
224
-
225
- > 💡If you are running on a GPU with at least 80GB VRAM, you can remove the `--offload_model True`, `--convert_model_dtype` and `--t5_cpu` options to speed up execution.
226
-
227
-
228
- - Single-GPU Image-to-Video inference
229
- ```sh
230
- python generate.py --task ti2v-5B --size 1280*704 --ckpt_dir ./Wan2.2-TI2V-5B --offload_model True --convert_model_dtype --t5_cpu --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
231
- ```
232
-
233
- > 💡If the image parameter is configured, it is an Image-to-Video generation; otherwise, it defaults to a Text-to-Video generation.
234
-
235
- > 💡Similar to Image-to-Video, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image.
236
-
237
-
238
- - Multi-GPU inference using FSDP + DeepSpeed Ulysses
239
-
240
- ```sh
241
- torchrun --nproc_per_node=8 generate.py --task ti2v-5B --size 1280*704 --ckpt_dir ./Wan2.2-TI2V-5B --dit_fsdp --t5_fsdp --ulysses_size 8 --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
242
  ```
243
 
244
- > The process of prompt extension can be referenced [here](#2-using-prompt-extention).
245
 
246
  #### Run Speech-to-Video Generation
247
 
 
56
 
57
 
58
  ## 📑 Todo List
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  - Wan2.2-S2V Speech-to-Video
60
  - [x] Inference code of Wan2.2-S2V
61
  - [x] Checkpoints of Wan2.2-S2V-14B
 
90
 
91
 
92
 
 
 
 
 
93
  Download models using huggingface-cli:
94
  ``` sh
95
  pip install "huggingface_hub[cli]"
96
+ huggingface-cli download Wan-AI/Wan2.2-S2V-14B --local-dir ./Wan2.2-S2V-14B
97
  ```
98
 
99
  Download models using modelscope-cli:
100
  ``` sh
101
  pip install modelscope
102
+ modelscope download Wan-AI/Wan2.2-S2V-14B --local_dir ./Wan2.2-S2V-14B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  ```
104
 
 
105
 
106
  #### Run Speech-to-Video Generation
107